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Summary

With the growing interest of integrating robotics into everyday life and indus-
try, the requirements towards the quality and quantity of applications grows
equally hard. This trend is profoundly recognized in applications involving
visual perception.

Whereas visual sensing in home environments tend to be mainly used for
recognition and localization, safety becomes the driving factor for develop-
ing intelligent visual control algorithms. More specifically, a robot operating
in a human environment should not collide with obstacles and executed mo-
tion should be as smooth as possible. Furthermore, as the environment is not
known on beforehand, a high demand on the robustness of visual processing
is a necessity.

On the other hand, in an industrial setting, the environment is known on
beforehand and safety is mainly guaranteed by excluding a human operator.
Despite these reasons, and the fact that visual servoing has gained much atten-
tion from industry to become a standard solution for robotic automation tasks,
applications are highly simplified. For example, methods such as visual fault
detection are already a mature technique in industrial manufacturing, where a
fixed camera observes a product (e.g., on a conveyor belt) and checks whether
it meets certain requirements. These operations can be executed at a fairly high
rate due to the simplicity of the system (e.g., static camera) and the simplifica-
tion of the processing task (e.g., binary images).

For both areas the identified difficulties are similar. Foremost, this is the
slow nature of (robust) visual processing, in respect to the ever growing de-
mand of increasing speed and reducing delay. These two application areas
with analogous limitations motivate the design of more direct approaches of vi-
sion in visual control systems. Therefore, in order to meet the requirements for
next generation visual control systems, this thesis presents approaches which
employ visual measurements as a direct feedback to design constrained mo-
tion.

First, for industrial robotics, in order to obtain the required positioning ac-
curacy, the measurement and fixation system have to be highly rigid and well-
designed, implying high cost and long design time. By measuring the posi-
tion of objects directly with a camera, instead of indirectly by motor encoders,
the requirements of the measurement and fixation system are less demanding.
Moreover, this motivates the miniaturization of the complete control system.
The approach is validated in experiments on a simplified 2D planar stage (i.e.,
considerable friction, poor fixation), which attains similar performance com-
pared to encoder-based positioning systems.

Secondly, in a human-centred environment, this direct sensing can improve
traditional visual control systems, when subject to certain disturbances. More
specifically, a method is proposed that uses an image-based feedforward con-
troller on top of traditional position-based visual servo control to overcome
disturbances such as friction or poorly designed local motor controllers. This
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visual feedforward control action is only active when an image-based error is
present and vanishes when that error goes to zero. The method is validated on
an anthropomorphic robotic manipulator with 7 degrees of freedom, intended
for operation in the human care environment.

Third, sensing the product directly gives rise to designing motion directly.
Whereas in traditional approaches the motion trajectory is designed offline and
can not be changed at runtime, direct trajectory generation computes the mo-
tion of the next step based on current state and events. This means that at any
instance in time, the trajectory of a motion system can be altered with respect to
certain desired kinematic or dynamic constraints. For industrial applications
this makes manufacturing on near-repetitive or non-rigid structures (e.g. flexi-
ble displays) possible. When applied to a robotic manipulator, this enables ob-
stacle avoidance to no longer be on path planning level, but on trajectory plan-
ning level, where kinematic or dynamic constraints can be taken into account.
This results in a motion that is smoother than when obstacle avoidance with
path planning is employed. For both application areas this direct trajectory
generation method is implemented and shows high flexibility in constrained
motion trajectory design.
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CHAPTER 1

Introduction

Abstract. This chapter gives an introduction to the topic of this thesis. The

difficulties of vision-based robot control are addressed and motivations are

given for the relevance of this work. In addition, clear research objectives

are stated and an outline of the remainder of this thesis is given.

1.1 Introduction

In recent years, robot technology has matured in a way that safe integration
in industry is a commodity. This development is motivated by the advantages
that a robot offers, compared to a human operator. Properties such as high ac-
curacy and repeatability, continuous operation and therefore considerable sav-
ings cannot be matched by human labour. One of the earliest applications for
industrial robots can be found in assembly lines1, where repetitive tasks have
to be executed at a conveyor belt (e.g., pick and place tasks, spray painting,
spot welding). Even though the environment does not change and events that
occur within the robot’s reach (e.g., moving parts) are deterministic, safe oper-
ation still has top priority. This is mainly due to the fact that a robot is unaware
of its environment and sensing is usually limited to the task at hand. This is
therefore the main reason for excluding human operators in the working range
of the robot.

When a robot needs to operate in an unknown and indeterministic environ-
ment, the intelligence for sensing and motion can not be provided in a straight-
forward manner and entails a complexity several orders of magnitude higher
than traditional robot control. This holds particularly for visual sensing which
provides a very rich and unordered bulk of information and leaves the segmen-
tation of this data into useful form a non-trivial task. Although the research
field of computer vision receives considerable interest and tasks that require vi-
sual sensing attain a certain maturity, still the foremost limitation that prevents
vision from being integrated directly as a safe sensing technique in robotics is
the level of complexity. Due to this complexity, a fundamental difference can
be distinguished between traditional robot control and vision-based robot con-
trol. In particular, traditional robot control lacks global sensing and essentially
executes tasks blind. On the other hand, vision-based robot control separates
constrained motion from path planning by focussing on the design of a path
(or direction) for positioning. Motion constraints are thus handled by the local
motor controller. Moreover, the simple nature of traditional control allows for
fast update rates, while vision-based control is restricted to a slow update rate.
This observation is also of importance when regarding real-time performance.
In general it is implied that the computation time of measurements should not

1http://www.prsrobots.com/1961.html
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CHAPTER 1. INTRODUCTION

compromise the performance or stability of the motion system. For vision-
based control, typical solutions which avoid such difficulties include a local
control loop for stability (i.e., ensuring a motion command is quickly reached)
and a visual loop which determines motion commands.

In comparison to the human visual system, as much as forty percent of the
human brain is devoted to visual processing. The visual cortex, which is the
largest system in the human brain, is functionally divided in several areas for
processing, where different areas account for different stimuli. Moreover, the
slow nature of human vision (i.e., the update rate of the human visual system
does typically not exceed 20-30 [Hz].) suggests that a higher level interpre-
tation is responsible for a large part of extracting relevant information. In-
deed, combined with the fact that visual processing can be guided (top-down
or bottom-up) this proves that the level of parallelism in processing exceeds the
current standards in computation power greatly. On top of this, even though
Moore’s Law states that the overall processing power for computers doubles
every two years, greater processing power does not necessarily imply that cur-
rent solutions would be adequate.

A solution to this mismatch of incorporating global information with con-
strained motion can therefore be guided in two directions. On the one hand
processing can be accelerated to account for the poor performance of vision-
based control by employing different processing platforms and limiting the
complexity of the process. On the other hand, a combination of traditional
robot control and vision-based control would complement each other such that
constrained vision-based motion becomes possible.

In this respect, in order to meet the requirements for next generation visual
control systems, this work presents insight and solutions to this typical visual
control problem.

1.2 Motivation

The work presented in this thesis is motivated by regarding two robotic case-
studies: industrial inkjet printing and vision-based service robotics. For both
applications, a similar approach towards motion planning can be executed.
That is, for industrial inkjet printing, the introduction of a camera in the con-
trol loop allows for more complex (i.e., constrained) motion design. For vision-
based service robotics a camera is already present, however, motion is not kine-
matically constrained. Following, this novel approach towards motion plan-
ning (i.e., online constrained vision-based motion planning) is highlighted, the
difficulties are addressed and an introduction to solutions is proposed.

1.2.1 Vision-Based Automation

Robotics in an industrial setting execute a wide variation of tasks. Examples
are for instance pick-and-place tasks, welding, fault detection, and spray paint-
ing. The overall similarity of these tasks is that motion should ensure a certain
accuracy and repeatability with respect to a certain position or object. Common
practise is the use of a specially designed fixation system (e.g., end-stop, prod-
uct carrier) such that the robot executes the same motion for every product or
task sequentially. Variability of the position of the product is as such minimized

2



1.2. MOTIVATION

and machine vision techniques can be used to achieve a higher robustness
for product localization. The desired motion can then be programmed by ei-
ther online or offline programming techniques. A typical online programming
technique is known as programming-by-demonstration where a user manually
moves the end-effector of the robotic manipulator to a desired position and
orientation and records the relevant robot configurations (i.e., in joint space).
These poses are then sequentially set as goal configurations for the manipula-
tor. Offline programming techniques are typically based on models (kinematic
or dynamic) of the robotic manipulator where simulations are executed to ob-
tain a desired motion. For both techniques motion control is executed with
feedback directly obtained from local motor encoders. Together with the high
performance of positioning that industrial robotics can achieve, this is the main
reason for the limited use of machine vision in industry.

In particular, consider the industrial application of inkjet printing. In next-
generation display technologies this manufacturing process is used to fabricate
OLED (Organic Light Emitting Diode) displays. On either rolls of plastic or
large sheets of glass, a nozzle has to be positioned over a repetitive structure
(i.e., a pixel on the display) where the print-head shoots a droplet of polymer
onto the substrate (see Fig. 1.1, left). In order to obtain the required positioning
accuracy, the measurement and fixation system have to be highly rigid and
well-designed, implying high cost and long design time. In this case, vision is
not used for positioning and only encoder-based feedback controls the motion
stage.

However, current developments in the display industry demand manufac-
turing solutions that guarantee similar specifications while increasing prod-
uct quality (i.e., bigger screens and higher resolutions at lower cost). Fur-
thermore, radical designs in display technology (i.e., flexible displays, see Fig.
1.1, right) even demands manufacturing that cannot be carried out by current
state-of-the-art fabrication solutions. Manufacturing products of this nature
needs additional sensing to detect exactly where an operation has to be exe-
cuted. Whereas current solutions assume an undeformable substrate with a
constant pitch between pixels, in the case of flexible displays these assump-
tions no longer hold.

Figure 1.1: Left: Industrial inkjet printer (Image courtesy of OTB Solar - Roth
& Rau). Right: flexible display (Image courtesy of Sharp).
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CHAPTER 1. INTRODUCTION

This motivates visual sensing with direct feedback to be incorporated into
the existing motion stage and enables the design of motion and subsequent
manufacturing to be directly dependent on these measurements. Moreover, by
measuring the position of objects directly with a camera, instead of indirectly
by motor encoders, the requirements of the measurement and fixation system
can be less demanding.

1.2.2 Vision-Based Service Robots

Service robots are being developed to assist humans in a wide range of tasks
that are considered dull, dirty or dangerous (DDD). Examples range from sin-
gle purpose robots (e.g., vacuum or lawn mower robots) to robots that are de-
signed as a general autonomous assistant. For such autonomous service robot
tasks can be highly complex. Examples are for instance grasping and manip-
ulation in 3D where a path has to be found in a cluttered environment and
dynamic objects (as well as the robot itself) can obstruct the manipulator at
any moment. This has motivated the development of service robots with an-
thropomorphic properties as can be seen in Fig. 1.2. This human-like similarity
is not only limited to the configuration of a manipulator, but is also often con-
sidered for the visual system. Common examples include for instance dual
7-DOF manipulators and a stereo vision system on a pan-tilt stage. Such de-
sign offers the robot a freedom and redundancy in sensing and manipulation as
is proven by human visual-motor coordination. Considering this redundancy,
the extra (i.e., redundant) degrees of freedom of a manipulator can be used for
secondary objectives which are not directly related to the main task. Examples
of these include the avoidance of obstacles, joint limits and even singularities
of the manipulator.

Despite these complex designs, the actual tasks that a service robot can
effectively execute are fairly limited and commonly motion has a fairly sim-
ple nature (e.g., detect object, pick up object, move object with low velocity
motion). Moreover, each individual process (i.e., vision, trajectory planning
and control) is separately or independently computed, resulting in slow move-
ments and a slow response.

By studying these issues in more detail, we consider a robot in the human
care environment. Robots intended to operate in a human-centred environ-
ment have as main priority to maintain a safe operation. This suggests that the
executed motion is as smooth as possible and collisions should be avoided at
all cost. In most situations the robot has to navigate in an unknown and clut-
tered environment, where moving obstacles have to be avoided. This means
that a path is not known beforehand and has to be planned at runtime. Cur-
rent solutions solve this problem at a path planning level by determining free
points in space for which motion is safe. Subsequently, motion is executed
that positions the manipulator from point to point, where, whenever possible,
smooth short-cuts are incorporated.

The consequence of this is that kinematic or dynamic constraints are not
taken into account and the motion of the robot can not be guaranteed as smooth
as possible. Moreover, motion is slow as visual measurements are updated
and incorporated (i.e., vision-based control) at a much lower rate than the rate
of local motor control. Furthermore, when regarding a robotic manipulator

4



1.3. RESEARCH OBJECTIVES AND CONTRIBUTIONS

with multiple degrees of freedom, obstacle avoidance does not only entail the
motion of the end-effector but also collisions that may occur with the remaining
links of the robot.

These typical problems in vision-based motion control are a clear motiva-
tion for the combination of traditional motion control with vision-based control
into one direct control solution. A direct trajectory generation method will in-
tegrate sensing directly into the trajectory design to form constrained motion.

Figure 1.2: Left: Personal Robot (PR2) developed by Willow Garage. Middle:
Meka M1 mobile manipulator developed by Meka Robotics. Right: Remotely
Operated Service Robot (ROSE) developed by Eindhoven University of Tech-
nology.

1.3 Research Objectives and Contributions

Based on the challenges in state-of-the-art visually controlled robotics, as ad-
dressed in previous sections, the main objective of this thesis is formulated as:

Design methodologies that provide robots with the ability to use visual measurements
in their activities in a direct and constrained way.

By putting more intelligence in visual perception (sensing) and the subsequent
design of motion (action), typical problems in vision-based motion systems can
be avoided. In more detail, the research objectives are stated as follows.

Research Objectives

1. Develop and experimentally validate vision-based control methodologies that can
incorporate direct visual measurements into robotic motion design.

2. Develop and experimentally validate a trajectory planning methodology that in-
corporates constraints and changes into online trajectory design.

5



CHAPTER 1. INTRODUCTION

Contributions

The contributions of this work can be described as follows:

• Feedforward Visual Servoing
For traditional vision-based control, an additional feedforward control
action can improve motion performance, when subject to certain distur-
bances. More specifically, a method is proposed that uses an image-based
feedforward controller on top of traditional position-based visual servo
control to overcome disturbances such as high friction or poorly designed
local motor controllers. This visual feedforward control action is only ac-
tive when an image-based error is present and vanishes when that error
goes to zero.

The method is validated on an anthropomorphic robotic manipulator
with 7 degrees of freedom, intended for operation in human care envi-
ronments.

• Direct Visual Servoing
Visual servoing encompasses that positioning is executed with respect to
an object. Direct feedback is preferable as direct measurements bypass
the uncertainties in system modelling and the non-rigidity of the mea-
surement and fixation system. When the processing time is short enough
this enables a direct feedback to local joint controllers. Moreover, this
dismisses the need of local motor encoders and motivates the miniatur-
ization of the complete control system.

The approach is validated in experiments on a simplified 2D planar stage
(i.e., considerable friction, poor fixation), which attains similar perfor-
mance compared with encoder-based positioning systems. The applica-
tion at hand is an industrial inkjet printing task where a near-repetitive
pattern serves as visual encoder.

• Direct Trajectory Planning
Traditional motion control designs a motion trajectory offline, which can-
not be changed at runtime. The concept of sensing the product directly
now gives rise to designing motion directly. In particular, direct trajectory
generation enables the design of constrained motion for the next time in-
crement based on the current state and events and a predefined trajectory
outline. This means that at any instance in time and at an arbitrary state,
the trajectory of a motion system can be altered with respect to certain
desired kinematic or dynamic constraints.

When considered for industrial applications such as industrial inkjet
printing, it enables the manufacturing of near-repetitive or non-rigid
structures (e.g., flexible displays).

When considered for robotic manipulators, it enables a direct motion re-
sponse which is not possible with current state-of-the-art solutions. Ob-
stacle avoidance is then no longer designed on a path planning level, but
on a trajectory planning level, where kinematic constraints can be taken
into account. This results in a motion that is more smooth than when
obstacle avoidance with path planning is employed.
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Direct trajectory generation can be either event-based or rate-based.
Event-based trajectory generation implies a motion that can be altered
online whenever an event occurs. Rate-based trajectory generation im-
plies that motion updates are incorporated at every iteration and as such
takes (changing) kinematic constraints into account at every time incre-
ment. Moreover, as is possible with traditional trajectory generation, mo-
tion can be designed with point-to-point motion or multi-point motion.

1.4 Outline

This thesis is divided in three main parts: I. Modelling and Planning of Robotic
Manipulators, II. Visual Control of Robotic Manipulators, III. Application and
Implementation (see Fig. 1.3). Each part is written as an independent section,
however, wherever necessary, reference to other sections is given.

Part I: Modelling and Planning of Robotic Manipulators

CH: 3
Modelling and Planning of Robotic Manipulators

Part II: Visual Control of Robotic Manipulators

Part III: Application and Implementation

CH: 6
Direct Trajectory Generation for Vision-based Control

CH: 5
Visual Control of Robotic

Manipulators

CH: 4
Modelling of 3D Vision

CH: 7
Product Pattern-based

Visual Servoing

CH: 8
Vision-Based

Obstacle Avoidance

Figure 1.3: Block scheme of the contents of this thesis.
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CHAPTER 1. INTRODUCTION

As a prerequisite for the remainder of this work, Chapter 2 is devoted to
a literature study. A global overview is presented which lists research and
developments in visual servoing. This includes traditional and novel methods
in visual control as well as developments in path and trajectory planning.

Outline of Part I: Modelling and Planning of Robotic Manipu-
lators

In the first part, the general concept of modelling and planning of robotic ma-
nipulators is presented.

Chapter 3 presents the basics in dynamic and kinematic modelling of robotic
manipulators. The focus lies on kinematic modelling as this allows for sepa-
rating the dynamic behaviour of a manipulator from its kinematic relations.
Control can then be executed on a velocity (first-order) level which assumes
a separate controller that guarantees velocity tracking with appropriate feed-
back. This also allows for the exploitation of the redundancy of the robot for
secondary tasks. Furthermore, an introduction is given for the planning of mo-
tion of robotic manipulators. This is divided in the planning of a path and the
planning of a trajectory for both Cartesian and joint space.

Outline of Part II: Visual Control of Robotic Manipulators

The main part of this thesis, presents basic and original work on the visual
control of robotic manipulators.

Chapter 4 discusses the modelling of 3D vision for retrieving 3D measurements
from single view cameras. The geometry between two views enables the esti-
mation of a planar homography, which can be decomposed into a rotational
and translational part. The estimation of this planar homography requires a
set of point correspondences as input. Two keypoint detection and matching
methods are discussed and their properties are evaluated in experimental set-
ting.

Chapter 5 presents several traditional approaches of visual control and dis-
cusses their pros and cons. A novel hybrid visual servoing method is pro-
posed which combines two traditional methods and as such exploits their ad-
vantages. The new approach is verified in simulation and experimental setting
with a 7-DOF robotic manipulator.

Parts of this chapter are presented in the following publication: [111].

Chapter 6 proposes a novel trajectory generation approach for robotic manip-
ulation. The new method, denoted Direct Trajectory Generation (DTG), is in-
spired from both traditional motion planning and vision-based motion plan-
ning. As such, it can incorporate direct changes of the trajectory and its con-
straints by updating the trajectory generation every iteration. The approach
is analysed and its properties are discussed and simulation and experimental
results are carried out for a single degree of freedom system.
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Parts of this chapter are presented in the following publications: [115] and
[110].

Outline of Part III: Application and Implementation

The final part of this thesis presents two different applications and their imple-
mentation using the methods presented in the former part of this work.

Chapter 7 presents the application and implementation of industrial inkjet
printing. A near-repetitive pattern serves as visual input for motion genera-
tion, where the method of direct trajectory generation incorporates constraints
on individual pattern structures. The camera then serves as single feedback
for motion control. Experimental results are presented for a 2D planar motion
stage with positioning on micrometer scale.

Parts of this chapter are presented in the following publications: [112], [113],
[114] and [115].

Chapter 8 presents the application and implementation of obstacle avoidance
for a robotic manipulator. 3D visual measurements and the direct trajectory
generation approach are designed such that a constrained avoidance motion
becomes possible. This effectively means that obstacle avoidance is no longer
executed on a path planning level, but on a trajectory planning level. In addi-
tion, this method is combined with obstacle avoidance for the self-motion of
the manipulator. Experimental results are presented for a 7-DOF redundant
manipulator.

Parts of this chapter are presented in the following publication: [110].

1.5 Research Projects

The research presented in this thesis has been performed within the project Fast
Focus On Structures (FFOS) and was financed by IOP Precision Technology. The
objective of the FFOS project is the development of a flexible, low-cost, minia-
turized measurement system for the accurate positioning of a production head
with respect to a product. The project is carried out by a joint consortium of in-
dustrial and academic partners. The industrial partners are OTB Engineering
B.V. (now Roth & Rau B.V.), Agilent Technologies Netherlands B.V., M2control,
NTS Group and Mitutoyo. In the FFOS project two separate Ph.D. projects
have been initiated. The first one has led to the thesis of Jeroen de Best, [34],
which focusses on motion control for near-repetitive structures. The second
project has led to the present thesis.

The research presented in this thesis has also been performed within the
project Embedded Vision Architecture (EVA) and was financed by the Dutch Min-
istry of Economic Affairs (Pieken in de Delta). The objective of the EVA project
is the design of architectures and algorithms for vision systems that are em-
bedded in electromechanical equipment for industrial inspection and produc-
tion. The project is carried out by a joint consortium of industrial and academic
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partners. The industrial partners are Chess, Assembléon, Philips and OTB En-
gineering B.V. (now Roth & Rau B.V.). As such, the EVA project has adopted
the FFOS case (i.e., industrial inkjet printing in particular) as practical applica-
tion. This research involves the implementation of the complete vision pipeline
on a FPGA (Field-Programmable Gate Array) processor and a SIMD (Single In-
struction Multiple Data) processor.

Moreover, research has also been performed in collaboration with the pro-
ject Remotely Operated Service Robot (ROSE). The objective of the ROSE project
is the development of a remotely operated service robot for home care appli-
cations. This service robot assists humans in a home environment while being
operated from a remote location.
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CHAPTER 2

Literature Review

Abstract. This chapter presents a global overview of research and develop-
ments in visual servoing. Individual sections cover traditional and novel
topics in visual control that are relevant for this thesis. A division is made
between historical, traditional and modern work in visual servoing, as well
as a review on developments in path and trajectory planning. Finally, re-
cent work on visual control is discussed that most resembles the develop-
ments as presented in this thesis. A few similar studies are highlighted and
a comparison is made to emphasize the differences between both.

To limit this review to the field of visual control, a general review for
the topics of modelling and control of robotics as well as visual processing
is not considered. Furthermore, this review discusses a global overview of
existing methods. A detailed explanation of visual control and its mathe-
matical details can be found in following chapters.

2.1 Historical Origins

One of the earliest works in visual servoing can be traced back to the early
1970’s. In 1973, Shirai and Inoue [133] developed a system that computes the
difference between the desired position of a block and the actual position by
visual processing and corrects the motion of a robotic manipulator accordingly.
The task is to put the block into a box and shows that, when incorporating
vision in such control systems, a higher accuracy can be achieved. As it takes
about 10 seconds to recognize the box, the visual loop is executed at 0.1 [Hz].

Hill and Park [61] formally introduced the term visual servoing in 1979. The
presented work describes visual servoing with a Unimate1 robot for both a
planar case and a 3D positioning case. An initial introduction to the different
distinctions of visual servoing is made in 1980 by Sanderson and Weiss [124].
The described taxonomy is between the direct and indirect approach towards
visual feedback. In particular, direct visual servoing generates a control signal
from visual data directly to the robot’s joints, while for indirect visual servoing
visual data only generates a reference for motion control and a separate, local
joint controller executes motion control.

Since these pioneering contributions several surveys and reviews were pub-
lished that describe the many different methodologies and applications in the
field over the years [124], [31], [64], [81]. A most useful introduction for anyone
unfamiliar with visual control are the tutorials by Chaumette and Hutchinson
[23], [24]. These present the basics as well the advanced approaches and even
shed light on some unresolved issues. A recent collection of state-of-the-art
research is a published work by Chesi and Hashimoto [26]. Focussing on ad-

1http://www.prsrobots.com/unimate.html
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vanced numerical methods, it is divided in the main sub-fields of visual con-
trol, i.e., vision, control and planning.

2.2 Traditional Visual Servoing

As visual servoing is a well studied research topic, many different sub-fields
have emerged over the years. The basic techniques, however, rely on the same
general control scheme which is defined to minimize an error as obtained from
visual data (see Fig. 2.1). In this, a double control loop structure can be identi-
fied, where the visual loop designs the motion to be executed by the robot and
a local loop controls the joints of the robot.

control
law

joint
control

Robot+-
errorref.

visual
processing

Figure 2.1: General visual servo control structure. In this, a local loop controls
the joints of the robot and a visual loop designs the motion to be executed by
the robot.

Different visual servo schemes mainly differ from how this error is ob-
tained. A survey and review on the traditional approaches can be found in
[64] and [31], a performance review in [47]. The two classical visual servo-
ing methods, image-based and position-based visual servoing (IBVS, PBVS),
are extensively used in practice and recent research on them focuses on their
performance, stability and behaviour in the face of uncertainties [23], [24].

Position-Based Visual Servoing

Position-based visual servoing (PBVS) employs an estimated object pose with
respect to the camera as main control objective [152]. As this visual control
method operates in 3D Cartesian space, when using only a single camera, full
knowledge of the intrinsic parameters of the camera (i.e., focal length, image
format and principal point) is essential. The error is obtained from visual pro-
cessing, most commonly with either an object model [39], sophisticated pro-
cessing or simplification of the object model [92].

PBVS allows for two different solutions. One solution decouples the trans-
lational and rotational motions, resulting in a straight line trajectory for the
camera in Cartesian space [23]. This advantageous property lets the camera
follow a deterministic trajectory which is the shortest path in Cartesian space.

However, the main disadvantage is the inability to control image features
directly. It may occur that image features (or the object) leave the field of view
(FOV), which may compromise the stability of the system. Much research has
been targeted at solving this issue. Wilson et al. [154] use an extended Kalman
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filter that estimates the state of the system (i.e., position and orientation) which
can cope with the loss of features. In this, features are represented in the covari-
ance matrix, which is altered according to the presence and location of a feature
in the field of view. In essence, the effect of a missing feature is removed from
the pose estimation.

Thuilot et al. [143] proposed a PBVS method to keep the object in the field
of view by tracking an iteratively computed trajectory. In this the rate of con-
vergence for rotational and translational motion is separated. Rotational errors
can decrease without constraints, while translational errors are adjusted to the
field of view constraint.

A known issue in visual servoing is the difficulty of studying the stability
properties of the complete system. For PBVS this is due to the sensitivity to
pose estimation errors. More specifically, PBVS can be proven to be globally
asymptotically stable, under the assumption that the pose estimation is perfect
[23].

Image-Based Visual Servoing

Image-based visual servoing (IBVS) takes image measurements directly as con-
trol objective. The task function is expressed as an error-function which should
be minimized, by using a suitable control law. This function is thus defined
from the displacement between corresponding 2D image feature points ex-
pressed in planar Cartesian coordinates. As one image feature point is detected
in a 2D image space, a minimum of 3 feature points are necessary to control the
6 Cartesian degrees of freedom (DOF). Moreover, due to this feedback in im-
age space, the control executes straight lines in image-space, whereas motion
trajectories in Cartesian-space are not considered.

Consequently, this property is the main disadvantage, as it may cause ex-
cessive camera motion. This can be easily shown when a pure rotation around
the camera’s optical axis occurs [22]. This so-called camera retreat problem com-
mands a translational motion backward and forward along the camera’s opti-
cal axis, instead of commanding only a rotational motion. A worst case sce-
nario is encountered when the rotational error is exactly 180 degrees around
the camera’s optical axis, which then commands the camera to retreat to infin-
ity.

One advantage, is the fact that a 3D model is not necessary and therefore,
usually, basic image processing suffices. Traditional IBVS uses the error be-
tween corresponding image features that lie on a Cartesian plane.

Besides 2D image features, other types of features are studied and applied
as visual measurements for control feedback. IBVS with 3D features [19, 126]
takes the depth of 2D image points into account in the control error. Andreff et
al. [5] use 3D lines for servoing. The control law is derived for one or multiple
lines and requires the depth to be observed.

Moments as visual features is studied in [139] which derives the analytical
form of the interaction matrix (i.e., the matrix that relates camera and feature
velocities) related to any feature moment. Six combinations of moments are
selected to control the six degrees of freedom of the system. The method is
designed for configurations such that the object and camera planes are parallel.
An extension to this configuration being non-parallel is proposed in [140].
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Regarding the stability properties, IBVS is more robust towards calibration
errors than PBVS [23]. However, for IBVS, only local asymptotic stability can be
proven due to the existence of local minima [23]. These local minima exist due
to the design of the task function. Commonly, the number of image features for
control exceeds three, creating a nontrivial nullspace of the interaction matrix.

Distinction of Traditional Approaches

For the traditional visual servoing methods, the overall architecture of the
robotic visual control system is not regarded. Numerous designs with respect
to a different control system, measurement system and their implementation
are therefore briefly highlighted [64, 23, 24].

Regarding the placement of the camera, two approaches are common-place;
eye-in-hand and eye-to-hand. The former has the camera located on the end-
effector, creating a dynamic measurement system. In this case, the kinematic
relation between object and camera is measured directly, resulting in more ro-
bust and accurate measurements. In the latter case, the camera is static and
observes an object as well as the robot from a distance. This creates the extra
difficulty that the error to be minimized is not necessarily in the center of the
image, and the positioning accuracy depends highly on the accuracy of cali-
bration and visual processing.

A second separation for visual control is the usage of a mono- or stereo
camera system. The obvious advantage of a stereo imaging system is the pos-
sibility of accurate depth measurements, which for a mono-vision system is
significantly more difficult. On the other hand, stereo imaging requires a high
accuracy with respect to timing synchronization and knowledge of both cam-
era’s position, as well as a duplication of the processing effort. Another camera
system worth mentioning is the omni-directional camera, in which a camera
covers a 360◦ field of view. For all mentioned visual control architectures, sim-
ilar kinematic relations can be derived that describe the motion of objects in the
field of view with respect to the motion of the camera. As such, visual control
of these systems is, to a certain extend, similar.

Finally, one last important differentiation in visual control systems, is the
implementation of the visual control algorithm. The classical method is known
as indirect visual servoing, which means that the (slow) visual loop acts as
reference for motion control and merely designs the path to be tracked. A local
(fast) joint control loop is necessary to achieve appropriate performance and
guarantees stability of the complete system. For direct visual servoing, the
local joint loop is directly controlled by visual measurements. This implies that
the visual control loop should be executed at a sufficiently high rate in order to
reduce delay and achieve the required control performance.

2.3 Hybrid, Partitioned and Switching Approaches

The combination of both image-based and position-based visual servoing into
one visual control method offers the ability to use the advantages of both ap-
proaches. Existing methods can be classified in either hybrid, partitioned or
switched visual servoing.
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As one of the earliest works in hybrid visual servoing, Deguchi [38] pro-
poses a partitioned approach for IBVS that separates translation and rotation
to keep the object in the field of view. A method that is perhaps most well-
known as hybrid visual control structure is the work presented by Malis et al.
[99] and proposes a method called 2-1/2D visual servoing. The method parti-
tions translational and rotational control by letting IBVS control translational
motion and PBVS control rotational motion. The stability of such ’model-free’
approaches is discussed in [98]. Another approach is the method developed in
[33]. This partitioned approach decouples the rotation around and translation
along the z-axis from all other DOFs. This is specifically developed to avoid
problems related to a pure rotation around the optical axis [22]. This problem
is also met by Kyrki et al. and presented in [86], where a task function is de-
fined in such a way that all translations and the rotation of the optical axis are
defined from PBVS and the remaining rotations from IBVS. Although a very
suitable method for keeping the object in the field of view, one drawback is
that the two IBVS rotational degrees of freedom are controlled in image space
and thus do not take Cartesian space into account.

A method that exploits the homography between two camera frames in
order to improve visual servoing and its stability is presented in [9]. The ho-
mography (a transformation that maps points from one 3D plane to another
3D plane) can be decomposed into a rotational and translational part without
requiring the model of the target object. This decomposition then allows for
a simple control law, based on direct measurements. Since this is, in essense,
an IBVS approach, only local asymptotic stability can be proven. A recent re-
sult by Ha et al. [54] guarantees robust global stability under the field of view
constraint by introducing a 3D visible set for PBVS which plays the role of the
2D visible set for IBVS. Analysis claims convergence to any desired pose under
the field of view constraint, regardless of large camera displacement and large
uncertainties in intrinsic and extrinsic parameters.

Aforementioned work executes visual control by combining or partitioning
the visual control structure. Closely related is the methodology of switching
control, which encompasses the idea that at each iteration it should be decided
which controller should be used, based on some performance criteria. Initial
work can be found by Hashimoto et al. [58] which proposes a method that
enlarges the stable region of visual servoing by using switching control and
relay images that interpolate initial and reference image features. Other meth-
ods allow switching of the controller based on the state of the system [47, 48]
or based on measurements in image space [27] and both employ switching be-
tween IBVS and PBVS.

In general, all aforementioned approaches come with their advantages and
disadvantages. One common consideration that has to be made is if the con-
trol should be executed in either image space or Cartesian space. This choice
thus decides the response of the system, where properties such as stability and
bounds on error can be analysed beforehand. Furthermore, another property
that has to be taken into account is the type of motion planning. Due to the
application of a task function, usually motion is planned on a path planning
level. Taking kinematic constraints into account by designing a trajectory on-
line is not considered in the traditional visual servoing approaches.
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2.4 High-Speed Visual Servoing

Initial developments in using parallel processors for vision dates back to the
1980’s. Earliest research on these integrated vision sensors are e.g. the ’1ms
visual feedback system’-project at the University of Tokyo [67], the ’silicon
retina’-project at Caltech [101], the ’vision chip’-project at MIT [155] and the
’high-speed range finder’-project at CMU [52]. The reasoning behind these de-
velopments is that visual processing on conventional systems is too slow to
achieve sufficient performance. By connecting the vision sensor directly to a
highly parallel processing chip the delay between image acquisition and pro-
cessing will decrease significantly and the processing will speed up signifi-
cantly.

Following these developments, an initial controlled application was pro-
posed in 1996 by Ishii et al. [66], which presents a tracking algorithm for a
2-DOF pan-tilt platform, controlled at 1 [kHz]. The massively parallel process-
ing vision chip (SPE-256) has 256 processing elements and thus represents a
16 × 16 [px] image. Developed at the Ishikawa-Komuro Laboratory [105], this
vision platform has been improved over the years (e.g., 128 × 128 [px] [105]
and 320 × 240 [px] [80] with processing at 1 [kHz]) and is still a state-of-the-
art. A historical overview of these developments and work by other research
groups is documented by Shingo Kagami in [69].

Other applications that employ this sensor can be found in the work of
Senoo et al. [129] in which two 2-DOF pan-tilt units forward visual information
to a larger robotic manipulator that performs a batting task, or the work of Imai
et al. [65] that employs the vision system for dynamic active catching.

Visual sensing in medical applications requires a high robustness (i.e., no
feature loss, fast feedback) and thus a high frame rate as is shown by Gin-
houx et al. in [50]. This work presents first experimental results in tracking of
the human beating heart in robotic assisted surgery. The control objective is
to achieve tracking of the robotic instrument with two visual measurements,
which is achieved by model predictive control with a visual update rate of 500
[Hz] (image size: 256 × 256 [px]).

In [51], the wing kinematics of the tethered fruit fly is analysed in real-
time. As this requires an extremely high speed vision system, a camera with a
dynamic region of interest (ROI) is used to achieve a visual update rate of 6250
[Hz]. In order to reach this rate the size of the image is downscaled to 3600
pixels to not exceed the bandwidth of data communication.

The obvious observation that can be made from these is the balance be-
tween a high frame rate and sufficient image detail (i.e., image size). A ded-
icated parallel processor will definitely facilitate a high frame rate, however,
this comes with the added difficulty of programming visual processing algo-
rithms in a straight-forward way. Moreover, at such rates different effects come
in to play. For instance, lighting can become an issue due to the short exposure
time of the image sensor. Another example is the property of standard indoor
lighting systems. As the camera is sampled higher than the 50 [Hz] alternating
current frequency, typical disturbances such as flickering will occur.
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2.5 Microscale Visual Servoing

A different recent advancement in visual control is in the area of micro-
manipulation. Examples of technological trends in miniaturization that would
benefit from visual (automated) control are for instance cell injections [161] or
manipulation of micro-electro-mechanical systems (MEMS, [150]). An
overview of the control issues that typically occur in micro-manipulation,
which also includes visual feedback, can be found in [71].

Particularly, the visual system senses in a planar environment where the
control objective can be quite diverse. Research on microscale imaging and po-
sitioning systems is performed for example by Ogawa et al. which proposes a
visual control system for tracking and directing motile cells using a high-speed
tracking system [107]. Vikramaditya et al. [151] present a visual guidance tech-
nique for automated microassembly of hybrid MEMS. The visual control loop
is closed at 30 [Hz] with 5 feature templates of size 16× 16 [px] and processing
on multiple DSP’s. Focussing more on the performance of visual servo tech-
niques in microsystem applications, Bilen et al. [12] present an experimental
comparison of conventional image based visual servoing (calibrated vs. uncal-
ibrated). Visual processing is limited (processing platform undefined) which
results in a visual control rate of 33 [Hz].

A direct visual servoing scheme for automatic nanoscale positioning is pre-
sented in [141]. High positioning accuracies are obtained, however, image
sensing is executed at a fairly slow rate, i.e., 25 [Hz]. Real-time visual track-
ing of 3-DOF and 6-DOF motion with near-nanometer precision is presented
in [78] and [77] respectively. Again here, a conventional processing platform
(i.e., PC) is used for visual processing and thus the visual frame rate is limited
to 25 [Hz].

Despite the difference in scale of sensing and motion, similar properties
hold as with the traditional visual control approaches. Therefore, the novelty
in these methods does not lay in the visual or control domain, but merely in
the scale of sensing.

2.6 Path and Trajectory Planning

Basic design of paths and trajectories for robot motion control is one of the
earliest fields of research when considering robotic technology. Traditional ap-
proaches that are now accepted as standard implementation can be found in
many well-known textbooks. See for example [87] and [134]. It is well known
that path planning [88] and trajectory planning [11] are two different topics.
The former considers only the geometry of positioning, while the latter con-
siders time and can thus include constraints on for instance velocity and accel-
eration. This difference is of importance, as commonly replanning of motion
(e.g., obstacle avoidance) is designed on the path planning level and motion is
designed and constrained separately by motor controllers.
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General Path Planning

Path planning as a general research field has many application areas, ranging
from robotics, computer animation to even molecular biology. For its purpose
in robotic motion and manipulation, many books are devoted to the general
problem of planning a path in an unknown or uncertain environment, see e.g.,
[87] or [88]. In these, solutions are usually divided into two different cate-
gories of approaches, commonly known as either combinatorial planning or
sampling-based planning. Combinatorial planning is aimed at completely cap-
turing all information needed to perform planning, whereas sampling-based
planning merely searches for a solution to solve the planning problem. As
such, combinatorial planning is a complete technique, meaning that if a solu-
tion exists it will be found in finite time. Despite this, in practise, the sampling-
based technique is far more popular due to its efficiency in execution.

Examples of sampling-based approaches are for instance Rapidly-exploring
Random Tree (RRT, [29]) or the Probabilistic RoadMap method (PRM, [29]). In
particular, PRM is a planner that can compute collision-free paths for robots in
a static environment by sampling the configuration space of the robot, testing
if these are collision-free and connecting these to existing configurations. RRT
is a similar technique, however, based on the construction of a tree in such
a way that any sample in the search space is added by connecting it to the
closest sample already in the tree. RRT-based algorithms were first developed
for non-holonomic and kinodynamic planning problems, and are therefore a
good example of a combination of path planning with kinematic or dynamic
constraints.

One example of a combinatorial technique, which is based on cell decom-
position is for instance SCOUT (Simple Calculation of Useful Tracks, [149]).
This is a multi-resolution approach that uses cell decomposition for path plan-
ning and bubble hierarchies for collision detection. The configuration space is
locally tessellated by binary division and bubbles are used to approximate the
geometry of the robot in the work space.

These methods are all aimed to plan a path which is complete (i.e., if there is
a solution it will be found in finite time). Methods that consider the robot as a
point in a potential field combine attraction towards a goal and repulsion away
from obstacles as main objective. These methods have a low computation time,
however, they can get stuck in local minima [87].

Path Planning in Visual Servoing

Planning a path for visual controlled robotics offers additional possibilities
compared to traditional path planning. More specifically, the presence of a
camera adds a space in which a path (or trajectory) can be planned. Compared
to the planning of a path (or trajectory) in joint- or Cartesian space, image paths
are fairly limited with respect to constraints. Conditions such as velocity and
acceleration are largely meaningless in image-space due to the difficulty in ob-
taining accurate measurements. Popular methods therefore employ the plan-
ning in image space only as guidance, for either the motion towards a target or
the avoidance of obstacles or both at the same time. One example is the work
of Chesi et al. [28]. In this, visibility and workspace constraints are considered
while minimizing a cost function such as spanned image area and trajectory
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length.

The method of Kermorgant et al. [74] considers PBVS as core visual servo
control approach and adds 2D visual information only when necessary. That
is, when an object is about to leave the field of view, the control law is changed.
This 2D information is weighted by the distance towards the image border.
Similar to this is the work presented in [55]. In this, a probabilistic integration
of 2D and 3D cues is proposed, where a weighted sum of IBVS and PBVS lets
visual servoing start with the position-based approach and end with the image-
based approach. It has to be noted that, besides path planning, these works
could also be listed as hybrid/partitioned visual servoing.

A different methodology, based on model predictive control (MPC) is pro-
posed by Chan et al. [21] and incorporates the field of view constraint into a
nonlinear MPC structure. Together with dynamic collision checking, a
constraint-aware control law is obtained that handles joint, visual and collision
constraints.

The concept of next best view (NBV) planning is a fairly new topic for visual
controlled motion [128]. NBV planning considers the determination of a next
view in free-space with respect to an object, and, as such, does not consider
limitations of the manipulator or constraints on the (image) path or trajectory.
For instance, the primary purpose of an NBV algorithm is to plan, as efficiently
as possible, the path for building highly accurate 3D models from images [122].

Trajectory Planning

One important distinction that has recently been made in trajectory design is
the concept of online trajectory generation. Whereas ’traditional’ trajectory
generation designs a motion trajectory offline, online trajectory generation de-
signs a motion trajectory at runtime and as such, can incorporate changes of
this trajectory online. This fairly new concept is particularly of interest for
sensor-based motion systems, as an integration of constraints into planning
becomes possible.

Traditional trajectory generation is commonly based on the assumption that
initial and final constraints (e.g., velocity and acceleration for a 5th order poly-
nomial) are equal to zero. The work of Ahn et al. [2] proposes a method,
denoted arbitrary states polynomial-like trajectory (ASPOT), which designs a
trajectory with arbitrary initial and final constraints. The method generates the
trajectories online, however, constraints are not taken into account.

Research presented by Thompson et al. [142] describes trajectory genera-
tion which explicitly considers the presence of obstacles. The method entails
adding a fourth order term to a cubic polynomial and a cost function to the
state equations. Solving for the parameters of the polynomial given initial
and final constraints then generates polynomial trajectories which minimise
the cost function. The main limitation of this method is the fact that the min-
imization method is a form of gradient descent and as such is subject to local
minima.

The work of Namiki et al. [106] presents an online trajectory generator for
catching a flying ball in mid-air. A 5th order polynomial is used to describe
all possible target trajectories in the neighbourhood of the catching point. The
parameters of the trajectory are optimized depending on the dynamics and the
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kinematics of the manipulator and the object. A final trajectory is then gener-
ated so that the end-effector can catch the target at one point, and a match be-
tween the position, velocity, and acceleration of the target and the end-effector
is satisfied. The obvious drawback of this method is the fact that the number of
potential trajectories to be evaluated is limited by the computational resources
of the processor. Therefore, the processing system consists of many floating-
point DSP modules.

Motion planning specifically designed for obstacle avoidance is developed
by Shiller et al. in [132]. The avoidance of static obstacles is generated for
one obstacle at a time. The robot is treated as a point-mass and bang-bang
trajectories (i.e., constant acceleration) are generated online. This limits the
method to be continuous only up to the velocity level. Another drawback is
that only simulation results are shown for a planar multi-obstacle avoidance
task.

A different approach towards planning trajectories considers filtering tech-
niques which alter an infeasible trajectory into a feasible trajectory [49]. In this
the filter generates output signals which are continuous up to and including
the second time derivative. Simultaneously, bounds can be set on first, second,
and third time derivatives. A filtering technique that is designed in discrete
time and guarantees constrained (asymmetric) bounds of velocity, acceleration
and jerk can be found in [53]. However, the method generates trajectories with
continuity only up to the second time derivative. Other examples of smooth,
online trajectories are for instance [10], [90] and [57].

A complete framework for the generation of motion trajectories online is
presented in the work of Kröger [83, 82]. Particularly motion systems subject
to unforeseen events benefit from this approach by being able to directly react
to events and switch between different control methods or domains. As such,
this is a hybrid switched systems approach to robotic manipulation and is mo-
tivated to generate motion with arbitrary initial constraints. In experiments,
however, a trajectory is presented in which the final constraints can be speci-
fied up to and including velocity (i.e., 3rd order) and the acceleration is set to
zero.

2.7 Closely Related Work

The work of Geraldo Silveira, denoted direct visual servoing [135], presents a
technique that uses only non-metric visual information to guide visual servo
control. A reference image is used to obtain projective parameters via a photo-
geometric registration method. The method is highly accurate and robust to il-
lumination changes, even in color images. As such, it still consists of the double
control loop structure typically found in traditional approaches (see Fig. 2.1).
Moreover, the considered path planning is limited to a linear (translation) and
geodesic (rotation) trajectory, where online updates and motion constraints are
not considered.

As described in the previous section, Torsten Kröger proposed a complete
framework for online trajectory generation [82]. At runtime the trajectory gen-
erator designs the motion of the next state based on the current state and
events. Although a complete framework is presented, experiments are only
shown with geometrically continuous trajectories up to the 2nd degree.
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The approach presented by Ville Kyrki in [86] describes a hybrid visual ser-
voing method that uses image information to control two rotational degrees of
freedom (pan and tilt) and Cartesian errors for the remaining degrees of free-
dom. This field of view constraint combines (i.e., partitions) IBVS and PBVS in
one control law, and does not consider a direct or single-loop approach.

A final work that is closely related, is the work of Namiki et al. [106] which
presents an online trajectory generator for catching a flying ball in mid-air. As
described in the previous section, the method is based on polynomial trajecto-
ries and an online optimization method to select a final trajectory that matches
the motion of the ball and the end-effector. Due to this optimization method,
the method’s main limitation is that the number of trajectories to be evaluated
is limited by the computational resources of the processor.

2.8 Summary

This chapter presented a global overview of existing work in visual servoing.
A historical review discusses the earliest developments in visual control which
started in the early 1970’s. Following, the main traditional approaches of visual
servoing (i.e., image-based and position-based visual control) are discussed,
which includes the current analyses on both approaches as well as methods
known as hybrid visual servoing which partition or switch between both.

Two novel and fairly recent advances in visual control are described in a
separate section. First, high-speed visual servoing is discussed which is a par-
ticularly novel method due to the ever growing availability of computation
power. One example in particular is high-lighted; the high-speed vision chip
of the Ishikawa-Komuro Laboratory. This sensor is especially interesting due
to the direct connection between sensor and processor and the application with
respect to a 2-DOF pan-tilt unit. Second, the micro-domain as new application
area for visual control is described as another topic of interest. Several exam-
ples are given and discussed accordingly. It is concluded, however, that this
microscale domain does not present any novel developments, but merely uti-
lizes a smaller scale for sensing.

A topic closely related to visual control is in the area of path and trajectory
planning. Although not necessarily combined with vision, the developments
in this are highly related to the planning of motion in visual control. The differ-
ence in path planning and trajectory planning is explained and several exam-
ples with respect to the online adaptation of constrained motion is presented.

A final section is devoted to research that is closely related to the work pre-
sented in this thesis. These are not necessarily related to each other but cover
separate topics as developed and treated in this work.

This literature review suggests that, concerning visual motion control, a
proper integration of vision with constrained motion is lacking. In particu-
lar, this involves the incorporation of a direct visual sensing scheme with a
trajectory that can be constrained (spatial and kinematic) online. These devel-
opments should not be limited by the update rate of the camera or the perfor-
mance of the processor (i.e., due to visual processing). As such, the combina-
tion of these topics (i.e., visual processing, kinematic robot control, trajectory
generation), is the subject of interest of this thesis.

21





Part I
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CHAPTER 3

Modelling and Planning of
Robotic Manipulators

Abstract. This chapter considers the basics in dynamic and kinematic mod-
elling of robotic manipulators. The analysis is presented as a general intro-
duction towards dynamic and kinematic robot control, where kinematic re-
dundancy and the use of this for the self-motion of a manipulator is treated
subsequently. The input for these control structures are introduced on the
basics of path and trajectory generation. These developments form the ba-
sis of manipulator control for all following chapters of this thesis.

3.1 Introduction

From a system point of view, the dynamic behaviour of a multibody system (a
robotic manipulator) is described on the level of accelerations (i.e., in general,
second-order nonlinear models). Inputs (forces/torques) acting on such sys-
tem induce motion as can be described by equations that result from Newton’s
second law. These equations can be written for general free rigid bodies as well
as for constrained robotic systems.

However, in many cases, the system to be controlled is of such structure
that a decomposition can be made between a second-order system and a first-
order system. The control of a first-order system considers the kinematics of
the multibody system and is designed by considering a kinematic model. The
complete control structure is then realized by assuming velocity inputs for the
kinematic controller and ignoring the dynamics of the multibody system. The
execution of these velocity reference inputs is then realized by a separate con-
troller with a dynamic output. The performance of this control structure is
physically feasible due to the assumption that movement is usually slow and
dynamic effects do not have a big influence. This approach, commonly referred
to as kinematic control, motivates the derivation of kinematic relationships be-
tween base and end-effector (in pure kinematic control) or end-effector and
object (in vision-based kinematic control).

3.2 Modelling of Dynamics

The dynamic model of a serial link robot formulated in a Euler-Lagrange rep-
resentation is given as [134]:

M(q)q̈ + C(q, q̇)q̇ + F f (q̇) + g(q) = τ(t), (3.1)

where q ∈ Rn, q̇ ∈ Rn and q̈ ∈ Rn is the vector of joint coordinates, ve-
locities and accelerations respectively. M(q) ∈ Rn×n is the symmetric, posi-
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tive definite inertia matrix and C(q, q̇) ∈ Rn×n is the matrix with centripetal
and Coriolis terms. Finally, g(q) ∈ Rn is the vector with gravitational terms,
τ(t) ∈ Rn is the vector of torque inputs and F f (q̇) ∈ Rn denotes the vector
of friction terms. A classical model of friction combines a viscous friction term
and a Coulomb friction term as

F f (q̇) = Fvq̇ + Fcsgn(q̇), (3.2)

where Fv denotes the (n × n) diagonal matrix of viscous friction coefficients
and Fc denotes the (n × n) diagonal matrix of Coulomb friction coefficients.
Furthermore, sgn represents the signum operator which is incorporated as

sgn(q̇) =




sgn(q̇1)
sgn(q̇2)

...
sgn(q̇n)


 . (3.3)

Ignoring friction, a classical approach is to derive an augmented PD control
law with gravity compensation as

τ = Kpeq + Kdėq + g(q), (3.4)

where eq = qd − q ∈ Rn is the error in joint space, ėq = q̇d − q̇ ∈ Rn is the
velocity error in joint space, qd and q̇d define the desired position and velocity
reference respectively, and τ ∈ Rn is the vector of torque inputs. Furthermore,
Kp, Kd ∈ Rn×n are symmetric positive definite gain matrices. This leads to the
’ideal’ (i.e., no friction) closed loop system:

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpeq + Kdėq + g(q), (3.5)

for which global asymptotic stability can be proven via Lyapunov’s direct
method [73].

This example of an augmented PD control law with gravity compensation
does not include friction. The fact that friction effects in mechanical systems
depend on multiple factors (e.g., material, temperature, velocity), makes it a
difficult phenomena to model. Even though many different models of friction
and the estimation of these models exist in literature (see e.g., [6], [13], [145]
and [72]), a rigorous analysis of these is beyond the scope of this introduction.
Control laws which include friction as well as the stability analysis of such
control laws has been a topic in many past researches, see for instance [144],
[165], [97] and the references therein for a brief overview.

From a practical point of view, however, friction can not always be so easily
ignored. As will be shown in Chapter 7, in order to achieve a higher perfor-
mance in motion control, a friction compensation scheme has to be included.

3.3 Modelling of Kinematics

One common method for the modelling of robot kinematics is by adopting
the Denavit-Hartenberg convention. This representation assigns coordinate
frames to the robotic joints and defines four parameters according to the ge-
ometric relationship between coordinate frames.
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A homogeneous transformation between two frames is nothing more than
the compact matrix representation of rigid motion. Consider a serial robotic
manipulator with n joints, where joint i has assigned the coordinate frame i− 1.
The rigid motion (position and orientation), of coordinate frame i with respect
to coordinate frame i − 1 of this manipulator can now be represented by the
homogeneous transformation matrix:

Ti−1
i (qi) =

[
Ri−1

i (qi) pi−1
i (qi)

01×3 1

]
, (3.6)

where Ri−1
i (qi) ∈ SO(3) represents the skew-symmetric rotation matrix, with

SO(3) the special orthogonal group and where pi−1
i (qi) ∈ R3 represents the

position vector, which are both dependent on joint displacement qi (see Fig.
3.1).

Figure 3.1: Coordinate transformations and Denavit-Hartenberg kinematic pa-
rameters in open kinematic chains [134].

The forward kinematics (FK) of a robotic manipulator defines the relation-
ship between individual joints of the manipulator q and the pose (position and
orientation) of the end-effector x by the kinematic map as

x = k(q). (3.7)

The joint variables q (generalized coordinates) are the angular and linear
displacements of revolute and prismatic joints respectively. The FK can now
be derived as a product of homogeneous transformations of subsequent coor-
dinate frames:

T0
n(q) = T0

1(q)T
1
2(q) . . . Tn−1

n (q). (3.8)

For the control of a manipulator, it is necessary to compute the inverse
kinematics (IK), which consist of determining the manipulator’s joint variables
given the pose of the end-effector. Since not always a closed-form solution ex-
ists (i.e., there can be multiple or infinite solutions), a common approach is
to solve this problem numerically [134]. This can be done by considering the
differential kinematics which give the relationship between the joint velocities
and the end-effector velocities. This will be discussed in the following section.
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3.3.1 Kinematic Control

The purpose of the differential kinematics is to define a relationship between
the joint velocities q̇ and the velocities (linear and angular) of the end-effector
ẋ as:

ẋ =

[
ṗ0

n

ȯ0
n

]
=

[
Jp(q)
Jo(q)

]
q̇ = J(q)q̇, (3.9)

where the subscript p denotes position and o denotes orientation and where
J(q) is the (6 × n) Jacobian matrix. The computation of this matrix commonly
follows a geometric procedure, where the contributions of each joint in terms
of linear and angular velocity of the end-effector are determined.

These geometric Jacobians Jp(q) and Jo(q) are based on the forward kine-
matics and can be derived in a systematic way as follows:

Jp =
[

Jp,1 . . . Jp,n

]
, Jp,i ∈ R

3 and (3.10)

Jo = [Jo,1 . . . Jo,n] , Jo,i ∈ R
3, where (3.11)

Jp,i =

{
z0

i−1 × (p0
n − p0

i−1) for revolute joint i

z0
i−1 for prismatic joint i

and (3.12)

Jo,i =

{
z0

i−1 for revolute joint i

0 for prismatic joint i
(3.13)

In this z0
i−1, is the third column of the rotation matrix Ri−1

i (qi).
If the pose of the end-effector can be specified in terms of a minimum num-

ber of parameters in the task space, it is also possible to determine the Jacobian
matrix by differentiation of the forward kinematics:

ẋ =

[
ṗ0

n

ȯ0
n

]
= Ja(q)q̇, (3.14)

where Ja(q) = ∂k/∂q and where Ja is termed analytic Jacobian. In general the
geometric Jacobian is adopted when physical quantities are of interest, while
the analytic Jacobian is adopted when task space quantities are of interest [134].

For control purposes the inverse relationship between joint and end-effector
velocities is considered. Let r be the number of Cartesian space variables nec-
essary for a task, m the number of Cartesian space variables and n the number
of degrees of freedom of the manipulator. For n = r (i.e., non-redundancy) the
inverse kinematic solution can be found with the differential kinematics:

q̇ = J−1
a (q)ẋ. (3.15)

However, because of drift due to the numerical implementation (i.e., numerical
integration), the Cartesian space error is taken into account as ẋ = ẋd + Kke.
This leads to the following system:

q̇ = J−1
a (q)[ẋd + Kke], (3.16)

in which e = xd − x ∈ Rn is the error in task space and ẋd defines the desired
velocity reference. The error dynamics can then be formulated as

ė + Kke = 0. (3.17)
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If Kk ∈ Rn×n is chosen as a positive definite (diagonal) gain matrix, the system
is asymptotically stable [134]. The Euler integration method then allows for
traditional joint position PD control:

q(tk+1) = q(tk) + J−1
a (q)[ẋd(tk) + Kke(tk)]∆t, (3.18)

and
τ = Kpeq + Kdėq + g(q), (3.19)

where ∆t is the integration interval, eq = qd − q ∈ Rn and ėq = q̇d − q̇ ∈ Rn

are the joint position and velocity error respectively, g(q) ∈ Rn is the term to
compensate for gravity effects and τ ∈ Rn is the vector of torque inputs. As
long as Kp, Kd ∈ Rn×n are positive definite, this controller guarantees global
asymptotic stability [134].

As the kinematic relation given by (3.15) directly allows for Cartesian ve-
locity inputs, the following describes a joint velocity PI controller.

τ = Kpėq + Kiξ, (3.20)

ξ̇ = ėq, (3.21)

where Kp, Ki ∈ Rn×n are positive definite matrices and ξ =
∫ t

0 ėq(σ)dσ.
The desired velocity can be obtained by either (3.16) or by a separate pro-

cedure (e.g., vision sensor). The PI controller in (3.20) including (3.16) can be
proven exponentially stable and uniformly, ultimately bounded [18].

3.3.2 Redundancy Formulation

For a kinematically redundant manipulator, a nonzero null space exists due to
more degrees of freedom than necessary for a particular task in the Cartesian
space ( r < n ). A common method of including the null space in a solution is
the gradient projection formulation [134]:

q̇ = J†
a(q)ẋ + (I − J†

a(q)Ja(q))q̇0, (3.22)

where q̇0 is an arbitrary joint velocity vector, J†
a = JT

a (JaJT
a )

-1 ∈ R
n×m is the

Moore-Penrose generalized inverse of Ja and I ∈ R
n×n is the identity matrix.

The first term is the particular solution to the inverse problem (Jaq̇ = ẋ), and
the second term represents the homogeneous solution to the problem (Jaq̇ =
0). Note that, for the sake of clarity, Ja(q) is written as Ja.
Thus, in the general inverse solution the matrix (I − J†

aJa)q̇0 is a projector of
the joint vector q̇0 onto the null space of Ja: N (Ja). The projection operator
(I − J†

aJa)q̇0 selects the components of q̇0 in the null space of the mapping Ja,
meaning that q̇0 produces only joint self-motion of the structure but not task-
space motion.

A problem that arises when considering redundancy in robotics is the fact
that the inverse of the Jacobian, J−1

a , is not uniquely defined [16, 41, 127]. As
presented in (3.22), the pseudo-inverse of the Jacobian, J†

a , is a commonly used
alternative. However, by definition, this pseudo-inverse has no proper geo-
metrical meaning. That is, in physical units, this pseudo-inverse is inconsistent
and should not be computed. This inconsistency originates from the compu-
tation of JaJT

a which involves an addition of units which are not similar. A
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proper alternative to the inconsistent pseudo-inverse is the use of a weighted
pseudo-inverse:

J#
a = W−1JT

a (JaW−1JT
a )

-1, (3.23)

where W is an appropriate, positive definite weighting matrix.
One of the most widely adopted approaches to solve redundancy is by op-

timizing a scalar cost function m(q) using the Gradient Projection Method
(GPM), i.e., choosing q̇0 = k0∇m = k0(∂m/∂q)T. This then represents a
smooth function for a secondary task in terms of some performance criteria
(e.g., distance towards mechanical joint limits, distance in Cartesian space). In
this, k0 is a scalar which controls the gain of the second task and can be defined
as [91]:

k0 =
|J#

a ẋ|
|(I − J#

aJa)∇m| . (3.24)

It is designed to avoid a large difference between the two terms defined in
(3.22). Notice that any differentiable cost function may be used as long as the
function can be reduced to an expression in terms of the joint variables only.

The redundancy task that tries to avoid singular configurations of a robotic
manipulator by maximizing the manipulability index M(q) is defined as [160]:

M(q) =
√

det(Ja(q)JT
a (q)). (3.25)

The gradient of M is found as

∇m = M(q) tr

{
∂Ja

∂q
J†

a

}
, (3.26)

where tr{.} represents the trace operator.
Again here it is identified, that if redundancy is considered, the compu-

tation of JaJT
a is inconsistent [137]. Due to the different physical units of the

individual elements in the Jacobian matrix, the performance index (3.25) does
not give a proper index for evaluating manipulability.

Instead, similar to the weighted pseudo-inverse, a symmetric positive
weighting matrix W can be incorporated to obtain a meaningful manipulability
index as

M(q) =
√

det(Ja(q)W−1JT
a (q)). (3.27)

Alternative to an index which evaluates manipulability, the following
derivation presents indices that evaluate a distance in Cartesian space. This
includes the distance between a point on the manipulator and some geometric
entity, i.e., a point, a line and a plane, which should be either minimized or
maximized.

Point Distance Index

A distance index is perceived as a difference in translation. As such, the ma-
nipulator’s self-motion (i.e., motion of the manipulator while keeping the end-
effector fixed at a certain pose) is also controlled as a translation and orientation
control is not regarded.
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The vector xjo originating from each joint (represented as point xj) towards
a point on an obstacle xo is represented as

xjo = xo − xj. (3.28)

The distance between these two points is found as

dp,p = |xo − xj|. (3.29)

The vector xjo represents the direction in which the self-motion of the manipu-
lator should move and thus can be used as

∇m =
n

∑
i=1

J#
a,ixjo,i. (3.30)

∇m =

[
J#

a,1

[
xjo,1

03×1

]
+ J#

a,2

[
xjo,2

03×1

]
+ · · ·+ J#

a,n

[
xjo,n

03×1

]]T

. (3.31)

Perpendicular Distance Index

The index that should minimize the self-motion of the manipulator is defined
as the summed perpendicular distance dp between a joint qi for i ∈ {1, . . . , n}
and the line Lbe connecting base and end-effector of the manipulator:

n

∑
i=0

dp,i =
n

∑
i=0

|xq,i − xbe|. (3.32)

This index can be directly assigned as a weight on the nullspace of each joint in
order to give higher priority (i.e., weighting) on joints with a larger offset with
respect to the base-end-effector centerline Lbe. The index and its derivative is
calculated as follows.

The shortest distance between base and end-effector is defined as the line in
3D space R3 connected by the points: xb and xe, which represent the position
of the base and end-effector of the manipulator respectively (see Fig. 3.2). In
order for the manipulator’s self-motion to be as small as possible, each joint
should be as close to this line as possible. The point xp which is projected
perpendicular on Lbe can be calculated as

xp = kp(xe − xb), where

kp =
xj · xe

|xe − xb|2
, (3.33)

where · represents the dot-product between two vectors. Since xb = 0 this is
simplified to

xp = kpxe, where

kp =
xj · xe

|xe|2
, (3.34)

from which the distance dp,l can be determined as

dp,l = |xp − xj|. (3.35)
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xb

xe

xj

dp

kp xp

Figure 3.2: The solid line Lbe is specified by two points which represents the
position of the base of the manipulator xb and the position of the end-effector
xe. The dashed line is specified by two points which represent the position of a
joint xj and its perpendicular projection on Lbe with perpendicular distance dp.

For clarity subscripts i for each joint have been omitted.
The vector xjp,i originating from each joint towards line lbe is represented as

xjp,i = xp,i − xj,i. (3.36)

This vector represents the direction in which the self-motion of the manipulator
should move and thus can be used as

∇m =
n

∑
i=1

J#
a,ixjp,i. (3.37)

∇m =

[
J#

a,1

[
xjp,1

03×1

]
+ J#

a,2

[
xjp,2

03×1

]
+ · · ·+ J#

a,n

[
xjp,n

03×1

]]T

. (3.38)

Boundary Index

A boundary is chosen as an area in Cartesian space R3 that should be avoided.
An example is, when the manipulator is mounted on a wheelchair, it should
not come into contact with a user. As such, a boundary can be defined by a
plane computed from the three points x1, x2 and x3 as follows (see Fig. 3.3).

First, the normal vector of the plane is determined by taking the cross prod-
uct between the two vectors x12 = x2 − x1 and x13 = x3 − x1 as n = x12 × x13.
Since the plane passes through the origin, this is also directly the equation of
the plane:

n · (xr − x1) = n · xr = 0, (3.39)

where xr = [xp, yp, zp]T is some point on the plane. The line starting from a

point in R3 space xp,b perpendicular to the plane can be parametrically repre-
sented as:

xb = xp,b + dp,bn, (3.40)

where dp,b represents the distance along the line. To determine the crossing
point xcp of this line and the plane, dp,b is found by filling (3.40) into (3.39) such
that:
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x3

x1

x2

n

xp,b

xcp

dp,b

Figure 3.3: The three points x1, x2 and x3 are used to form a planar bound-
ary. The distance perpendicular towards the plane dp,b starting from point xp,b

(which represents a joint position) and intersecting the plane in xcp is used as
index to avoid a certain area in the workspace.

dp,b = −
xp,b · n

nTn
, (3.41)

and filled into (3.40) to obtain the intersection point xcp.
The vector xbp,i originating from each joint perpendicularly towards the

plane is then defined as
xbp,i = xcp,i − xp,b. (3.42)

This vector represents the negative direction in which the self-motion of the
manipulator should move to avoid the plane and thus can be used as

−∇m =
n

∑
i=1

J#
a,ixbp,i. (3.43)

∇m =

[
J#

a,1

[
xbp,1

03×1

]
+ J#

a,2

[
xbp,2

03×1

]
+ · · ·+ J#

a,n

[
xbp,n

03×1

]]T

. (3.44)

This index is now presented for one plane. This can be extended to include
multiple planes or even a surface that acts as avoidance area.

3.4 Path Planning

In the field of motion planning, a clear difference is made between path plan-
ning and trajectory generation. While path planning only takes geometric con-
siderations into account, a trajectory will include time and can therefore specify
velocity and acceleration constraints. Furthermore, a path, ρ , is defined as a
continuous, parametrized sequence of points in either the joint space, J or
configuration space, C, of a robot. Simply stated, the configuration space, C, of
a robot is the set of all possible configurations. This thus excludes configura-
tions with joint values that are outside the limits of the joints, which means that
the configuration space is only a subset of the joint space. Moreover, in gen-
eral, this subset does not have to be a smooth manifold and may have singular
points [166].
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The basic motion planning problem is to find a path from an initial con-
figuration to a final configuration without any collisions (see Fig. 3.4). This is
defined in many textbooks (see e.g., [88], [29]) with the following formulations.

3.4.1 Constraints on Paths

Let W be the world for which W = R2 and W = R3 represents a 2-dimensional
or 3-dimensional world respectively. Suppose W contains an obstacle region,
O ⊂ W and let a rigid body robot be defined as A ⊂ W and a multi-body robot
as Ai ⊂ W , where i ∈ {1, 2, . . . , n} denotes the link i. The configuration of A
is denoted as q ∈ C, which is determined by specifying the set of all possible
transformations that may be applied to the robot. The task of motion planning
is then to find a collision-free path between an initial and a final configuration.

Obstacles

An obstacle in configuration space, Cobs ⊆ C, is defined as

Cobs =
n⋃

i=1

{q ∈ C|Ai(q) ∩O 6= ∅} . (3.45)

The configuration space that is collision-free is denoted as free-space, C f ree, and
can be defined as

C f ree = C \ Cobs. (3.46)

A path, that connects the initial configuration qI and the final configuration q f

as ρ : [0, 1] → C, with ρ(0) = qI and ρ(1) = q f , should obviously be designed
collision free and can be formulated as

ρ ⊆ C f ree. (3.47)

Self-Collision

When considering a robotic manipulator with multiple links, a collision can
occur between different links of the manipulator. This can be defined as a set
of collision pairs [88] P , where each pair, (i, j) ∈ P represents a pair of link
indices i, j ∈ {1, 2, . . . , n}, such that i 6= j. It has to be noted that not all pairs
are represented in P , since consecutive links are already connected to each
other. Formally, the self-collision space, Cscol , can be defined as

Cscol =
⋃

[i,j]∈P

{
q ∈ C|Ai(q) ∩Aj(q) 6= ∅

}
. (3.48)

The complete collision space for the manipulator, Ccol ⊆ C, can then be defined
as the set union of the obstacle space and the self-collision space, or

Ccol = Cobs

⋃
Cscol . (3.49)

As final note, it should be mentioned that path planning only considers spatial
constraints. Kinematic or dynamic constraints are not taken into account.
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qf

qI

CobsCobs

Cfree

Figure 3.4: The task of path planning is to find a path from qI to q f in C f ree.
The entire space is represented as C = C f ree ∪ Cobs.

3.5 Trajectory Planning

Traditionally, trajectories can be classified into several categories, i.e., polyno-
mial, trigonometric and exponential. The trajectories considered in this chapter
are based on polynomial functions and are designed by choosing an appropri-
ate polynomial and by setting up a (linear) system of equations. The order of
this polynomial trajectory thus depends on the constraints set on each point
(e.g., velocity, acceleration, jerk) or on the trajectory itself (e.g., timing, length).
A further extension takes the dynamics of the system into account and is re-
ferred to as kinodynamic planning. When designing such motion profile, the
traditional approach is to compute the trajectory generation off-line. Motion is
then executed by comparing measurements with the known trajectory on-line
(i.e., feedback control).

3.5.1 Constraints on Trajectories

When designing a trajectory for motion control, the constraints on the trajec-
tory act in different domains. The trajectory constraints can be defined on a
specific point of the trajectory (local), or on the complete trajectory (global).
For example, a local constraint could involve motion constraints on specific
points, while a global constraint could define the continuity of a trajectory. The
following lists the most common constraints applicable for motion trajectories.

Kinematic Constraints

In practical applications, the constraints on the trajectory depend on the physi-
cal limits of the actuators. These actuation limitations can be described as con-
straints on the velocity and acceleration. For the velocity q̇ and the acceleration
q̈ this is defined per joint as

q̇ ∈ [q̇min, q̇max] , q̇min, q̇max ∈ R
n,

q̈ ∈ [q̈min, q̈max] , q̈min, q̈max ∈ R
n, (3.50)
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where the lower limit denoted with min is usually < 0, and the upper limit
denoted with max is usually > 0.

When positioning with trajectories that have piecewise constant velocity or
acceleration profiles, or trajectories that contain discontinuities in velocity or
acceleration profiles, the jerk (derivative of acceleration) may become infinite.
This can lead to effects such as vibrations and therefore wear of the mechanical
system. The jerk should therefore be constrained to minimize the following
functional:

∫ T

t=0

...
q2(t)dt. (3.51)

Another common constraint criteria is execution time. An electromechani-
cal system should execute a motion within a certain time-period, thereby effec-
tively constraining the velocity or acceleration. For a minimum time trajectory
this is written as

min
[
t f − ti

]
, where t f > ti. (3.52)

Dynamic Constraints

The physical limitations of an actuator impose an important constraint to the
controller design. One example is the torque τ, which is a dynamic constraint
and is bounded as

τ ∈ [τmin, τmax] , τmin, τmax ∈ R
n, (3.53)

where τmin < 0 and τmax > 0.

Furthermore, dynamic trajectory generation incorporates the dynamics of
the system to be controlled into the trajectory. This is usually modelled by con-
sidering the elastic, dissipative and inertial properties of the system. To avoid
vibrations and to avoid exciting resonance frequencies, the trajectory has to be
free of discontinuities. In particular, the acceleration profile should be smooth,
as this is directly linked to the inertial forces applied to a motion system. This
can be expressed in terms of parametric continuity. A trajectory profile has a
parametric continuity Cnp when the np

th derivative of the trajectory with re-
spect to time is continuous. This not only holds for the trajectory profile itself,
but also for subsequent trajectories, on connecting points. If, for example, the
trajectory should have a continuous acceleration profile, then np ≥ 2.

Spatial Constraints

The boundaries of a manipulator’s workspace can be defined as a spatial con-
straint. This can be due to the finite length or manoeuvrability of the manipu-
lator. In mathematical terms this can be expressed as

q ∈ [qmin, qmax] , qmin, qmax ∈ R
n.

These limits are not necessarily part of the trajectory generation directly, but
can change a manipulator’s path.
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3.5.2 Basic Trajectory Profiles

Trajectories can be generated using several basic elementary functions (e.g.,
trigonometric, exponential, polynomial, etc.). As a complete overview of this
can be found in literature (see e.g., [11]), this introduction will be limited to the
function that is used extensively throughout this work.

Consider a polynomial function of degree nt of the form

q(t) = a0 + a1t + a2t2 + · · ·+ ant t
nt , (3.54)

with t ∈ [tI , t f ], where tI indicates the initial time instant (t = 0) and t f indi-
cates the final time instant. The nt + 1 polynomial coefficients ai can be deter-
mined while satisfying a number of required constraints.

A general solution is acquired by solving a system of linear equations:

Ta = b, (3.55)

where T is the so-called Vandermonde matrix (see (3.61)) of size (nt + 1) ×
(nt + 1), a contains the unknown polynomial coefficients a = [a0, a1, . . . , ant ]

T

and b lists the (nt + 1) constraints that the polynomial should satisfy. Since
matrix T is invertible, the coefficients a can be computed as

a = T−1b. (3.56)

Using a polynomial interpolation method to determine a trajectory has the ad-
vantage that all points are crossed and that the trajectory is smooth. A draw-
back is the computational effort needed (complexity is of order: O(n2

t + n3
t ))

and the fact that for large values of nt numerical errors may occur.

Point-to-Point Motion

Consider q(tI) and q(t f ), the position at initial and final time instances of the

point-to-point trajectory. Similarly, this can be written for the velocity q̇(t),
acceleration q̈(t) and the jerk

...
q (t).

Let at time instance tI and t f the constraints on the trajectory satisfy

q(tI) = qI , q(t f ) = q f ,

q̇(tI) = vI , q̇(t f ) = v f ,

q̈(tI) = αI , q̈(t f ) = α f . (3.57)

In motion control, the jerk negatively influences the efficiency of the control
algorithm, and, as presented by Kyriakopoulos and Saridis [84], a lower jerk
will lead to a lower positioning error. Furthermore, for simple trapezoidal tra-
jectories, discontinuities occur during transition of constant to zero acceleration
and velocity reversal. This jump in acceleration will cause infinite values for
the jerk, leading to unwanted vibrations and electric noise in the power source.
Therefore, to achieve smooth motion and a longer life-span of the robotic ma-
nipulator, minimum-jerk trajectories are a necessity. Flash and Hogan showed
in [63, 45] that choosing the trajectory as a 5th order polynomial, implies that
the 6th derivative is zero, which will minimize the integrated squared of jerk:
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∫ T

t=0

...
q 2(t)dt =

∫ T

t=0

[
d3q(t)

dt3

]2

dt. (3.58)

Proof is given with calculus of variations in Appendix A. The idea resem-
bles finding the minimum of a function: find the derivative of the function with
respect to a small perturbation and when that derivative is zero, the minimum
is found. The trajectory has the form:

q(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5, (3.59)

for 0 ≤ t ≤ T.
Continuing on this, the velocity and acceleration can be written as

q̇(t) = a1 + 2a2t + 3a3t2 + 4a4t3 + 5a5t4,

q̈(t) = 2a2 + 6a3t + 12a4t2 + 20a5t3. (3.60)

In order to determine the polynomial coefficients of a trajectory, the equations
(3.59) and (3.60) and the constraints of (3.57) are combined to set up a system
of linear equations (i.e., the Vandermonde matrix [11]):

b =
[

q0 q1 . . . qnt−1 qnt v0 α0 vnt αnt

]T
= Ta =




1 t0 . . . tnt+4
0

1 t1 . . . tnt+4
1

...

1 tnt−1 . . . tnt+4
nt−1

1 tnt . . . tnt+4
nt

0 1 2t0 . . . (nt + 4)tnt+3
0

0 0 2 6t0 . . . (nt + 4)(nt + 3)tnt+2
0

0 1 2tnt . . . (nt + 4)tnt+3
nt

0 0 2 6tnt . . . (nt + 4)(nt + 3)tnt+2
nt







a0

a1
...

ant−1

ant

ant+1

ant+2

ant+3

ant+4




, (3.61)

where qmp, mp ∈ {1, . . . , nt − 1} and the accompanying rows in T are only
filled when a multipoint trajectory is to be designed. Moreover, if derivative
constraints (e.g., velocity, acceleration) on via-points are also required, these
can be incorporated in a similar fashion. The polynomial coefficients can then
be found as a = T−1b, where

a0 = qI ,

a1 = vI ,

a2 =
1

2
αi,

a3 =
1

2T3

[
20h − (8v f + 12vI)T − (3αI − α f )T

2
]

,

a4 =
1

2T4

[
−30h + (14v f + 16vi)T + (3αI − 2α f )T

2
]

,

a5 =
1

2T5

[
12h − 6(v f + vI)T + (α f − αI)T

2
]

, (3.62)
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with h = q f − qI and where it is assumed that T = t f − tI .
When regarding a trajectory with multiple points, again the concept of para-
metric continuity becomes important. Parametric continuity describes to what
order two adjoining trajectories match. For example, C2 indicates that adjoin-
ing trajectories have equal position, as well as velocity and acceleration at the
intersection point (i.e., continuous up to the 2nd derivative). Therefore, in or-
der to avoid discontinuities in multipoint trajectories, a sufficiently high order
polynomial has to be chosen.

Time Constraints on Trajectories

When leaving the execution time te unspecified, a minimum-time trajectory can
be calculated by regarding the constraint on acceleration. This is often called
a ’bang-bang’ trajectory, since the acceleration will alternatively switch from
maximum acceleration αmax to minimum acceleration αmin and vice-versa. If
the minimum and maximum acceleration are equal in magnitude (i.e., |αmin| =
|αmax|) and the trajectory is symmetric with respect to its middle point (i.e., flex

point) the switching time ts is found as ts =
t f −tI

2 .
A different approach is to leave timing unconstrained and only regard the

constraints on velocity and acceleration. The execution time of the trajectory
then depends on the maximum velocity vmax or the maximum acceleration
αmax. Consider the velocity trajectory, taken from a 5th degree polynomial with
initial constraints qI = q̇I = q̈I = 0, and final constraints q̇ f = q̈ f = 0, as:

q̇(t) =

(
30

T2
t4 − 60

T
t3 + 30t2

)
h

T3
. (3.63)

Assuming a symmetric trajectory, the maximum velocity can be found at

tv,max =
t f −tI

2 . As t ∈ [0, T] gives tv,max = 0.5T, we can obtain:

vmax = max |q̇(t)| = 15

8

(
h

T

)
, and thus,

te =
15

8

h

vmax
, (3.64)

which means that the maximum velocity of a trajectory can be designed by
altering the execution time.

Similarly, a maximum acceleration can be included. Consider the accelera-
tion trajectory, again taken from a 5th degree polynomial with initial constraints
qI = q̇I = q̈I = 0, and final constraints q̇ f = q̈ f = 0, as:

q̈(t) =

(
120

T2
t3 − 180

T
t2 + 60t

)
h

T3
. (3.65)

Assuming a symmetric trajectory, the maximum acceleration can be found at

tα,max = { 1
2 +

√
3

6 , 1
2 −

√
3

6 }, and we can obtain:

αmax = max |q̈(t)| = 10
√

3

3

h

T2
, and thus,

t2
e =

10
√

3

3

h

αmax
, (3.66)
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which means that the maximum acceleration of a trajectory can be designed by
altering the execution time.

In practical situations, a maximum velocity vmax and a maximum accelera-
tion αmax is given, or can be derived from motor specifications. The execution
time can then be determined as:

te = max





15

8

h

vmax
,

√
10
√

3

3

h

αmax



 . (3.67)

Following, it can be identified from h that a linear relation exists between
vmax and αmax as

h =
vmax

15
8

T =
αmax

10
√

3
3

T2, and thus,

vmax =
αmax

16
9

√
3

T, (3.68)

which means that the maximum acceleration of a trajectory can be designed by
bounding the maximum velocity, and vice versa.

3.6 Summary

This chapter served as a brief recapitulation of basic modelling and planning
of robotic manipulators. The presented content can be found in many well-
known robotics and planning books, however due to this addition, these need
not be consulted for a complete understanding of the remainder of this thesis.

First, the framework for the modelling of dynamics and kinematics is pre-
sented, which includes the topic of kinematic control with redundancy formu-
lation. In particular, the use of kinematic redundancy for avoidance motion
is presented, which includes several distance indices, i.e., towards a point, a
line and a plane in Cartesian space, that can serve this purpose. The presented
method is known as the gradient projection method where the gradient of a
certain index can be used as secondary task. As side-note the inconsistency
of the pseudo-inverse of the Jacobian, as used for redundant robot control, is
addressed. This inconsistency originates from an addition of units which are
not similar. Similarly, this can be found in the computation of the manipula-
bility index for singularity avoidance. A proper alternative for this Jacobian
pseudo-inverse is presented as the weighted Jacobian pseudo-inverse.

Finally, a detailed description of path and trajectory planning is presented.
For path planning a formal representation of obstacles and self-collision is
given. For trajectory planning, the different constraints a trajectory will en-
counter are addressed as well as an introduction to basic polynomial trajectory
profiles. This includes the mathematical developments for polynomial point-
to-point trajectories and their timing constraints. A 5th order polynomial tra-
jectory serves as example as this will minimize the integrated squared of jerk,
and will therefore offer advantages for motion control (i.e., smooth motion,
continuous acceleration).
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CHAPTER 4

Modelling of 3D Vision

Abstract. This chapter discusses the modelling and analysis of 3 dimen-

sional vision. As a sensor, a camera obtains measurements from which

information can be extracted for the purpose of control and analysis. Rele-

vant modelling which is considered includes modelling of the camera and

lens and the relationship between two camera views in order to extract a

3D pose estimation.

4.1 Introduction

Vision-based perception considers the analysis of a 3D scene (the ’world’) in the
form of 2D measurements (the camera image). The modelling of all involved
topics ranges from signal processing, kinematic modelling of rigid bodies, to
the geometry and mathematical relations of camera models, lenses and pro-
jections. In this chapter, the modelling of 3D vision includes the pinhole cam-
era model with geometric lens distortion and two view geometry. An accurate
model of the camera and lens will correct for lens distortion and transforms im-
age information into relevant Cartesian measurements. In order to extract 3D
information from two images, two view geometry requires the decomposition
of a homography matrix, which can be estimated by two sets of corresponding
keypoints. As such, this involves an analysis of methods to detect keypoints in
a scene (and from an object) to estimate the homography and subsequently the
decomposition of this homography in order to obtain a 3D Cartesian position
and orientation difference. The motivation behind this homography-based ap-
proach is the fact that an object model is not necessary for detection. As the
analysis is purely image-based, a single image of an object is sufficient for lo-
calization in 3D space.

4.2 Pinhole Camera Model

Consider a point x in space with coordinates x = [x, y, z]T ∈ R3. Let Fi f be

the image frame onto which x is mapped as an image coordinate p = [u, v]T ∈
R2. This perspective projection considers the focal plane at a distance f and is
defined as:

p = [u, v]T = [ f
x

z
, f

y

z
]T . (4.1)

Since the projection is centred through one point, this model is referred to as
the pinhole camera model (see Fig. 4.1). In homogeneous coordinates (which
is a convenient representation for projective geometry) and taking into account
the camera’s intrinsic parameters, this can be written as:

p′ = Kx′, (4.2)
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Fif
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Figure 4.1: The pinhole camera model. Real world point x intersects the image
plane at the image point p by a ray starting from the optical center Oc.

where p′ = [u, v, 1]T , x′ = [ f x
z , f

y
z , 1]T and

K =




αx sp x0

0 αy y0

0 0 1


 , (4.3)

where, αx and αy are scale factors in x and y-direction respectively, (x0, y0) the
coordinates of the principal point and sp the skew parameter.

The extrinsic parameters, which describes the rotation and translation of
the camera frame Fc with respect to the object (world) frame Fo, are incorpo-
rated as

p̄′ = K [I3 03×1]

[
Roc toc

0 1

]
x̄, (4.4)

where x̄ = [x, y, z, 1]T , I3 is the 3× 3 identity matrix, 03×1 is a 3× 1 zero vector
and Roc and toc represent the rotation and translation component.

4.2.1 Camera Calibration

In the real world, the pinhole camera model is affected by the distortion of
the lens. Most commonly, lenses suffer from radial and tangential distortion,
which can be modelled and corrected for (see Fig. 4.2).

In literature many different state-of-the-art camera calibration techniques
are identified, e.g., a review and survey can be found in [123], a historical re-
view can be found in [30]. These are mainly aimed at macroscopic camera
calibration, where a minimization technique is used to find the optimal intrin-
sic and extrinsic camera parameters. Three techniques of camera calibration
stand out in literature due to their accuracy and robustness; Tsai [146], Zhang
[162] and Heikillä [60]. Tsai’s model uses only a second order radial distor-
tion model, while Zhang incorporates second and fourth order terms. Tsai’s
algorithm determines a system of n linear equations based on the radial align-
ment constraint [146] to solve for the extrinsic parameters. The second step
uses a non-linear optimization scheme to determine the intrinsic parameters.
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Figure 4.2: Left: no distortion, middle: pincushion distortion, right: barrel
distortion.

Zhang’s method uses multiple calibration pattern orientations to compute a
projective transformation between image points to solve a linear set of equa-
tions and obtain the camera’s internal and external parameters. A non-linear
minimization of the reprojection error then optimizes all recovered parameters
[162]. Heikillä’s method is different for also incorporating tangential distortion
components. First, a direct linear transformation (DLT) determines an initial
estimate of the camera parameters. A non-linear least squares estimation then
optimizes the internal parameters and computes the distortion parameters.

In this work the method of Tsai is chosen for camera calibration. The tan-
gential distortion component is neglected and only a single radial distortion
parameter (κ1) is modelled since it is noted in several studies [146, 15] that this
is sufficient when dealing with industrial machine vision lenses.

The relation between distorted image points p = [u, v] and undistorted (or
corrected) image points pcor = [ucor, vcor] can then be defined as

ucor = u(1 + κ1r2),

vcor = v(1 + κ1r2), (4.5)

with r2 = u2 + v2. By combining equations (4.1), (4.4) and (4.5), the following
expression can be written for the calibration model:

u(1 + κ1r2) = f
r1,1x + r1,2y + r1,3z + tx

r3,1x + r3,2y + r3,3z + tz
, (4.6)

v(1 + κ1r2) = f
r2,1x + r2,2y + r2,3z + ty

r3,1x + r3,2y + r3,3z + tz
, (4.7)

with f the focal length. The entries of the rotation matrix and translation vector
are taken as

Roc =




r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3


 , toc =

[
tx, ty, tz

]T
. (4.8)

For readability, the subscript oc is omitted.
Tsai’s two step procedure can then be employed by first determining the ex-

trinsic parameters through a closed form solution and a radial alignment con-
straint (RAC), which assumes that the lens distortion occurs only in the radial
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direction from the optical axis. An overdetermined system of linear equations
is set up as




vx
vy
vz
v

−ux
−uy
−uz




T



t−1
y r1,1

t−1
y r1,2

t−1
y r1,3

t−1
y tx

t−1
y r2,1

t−1
y r2,2

t−1
y r2,3




= u, (4.9)

which can be solved with p > 7 calibration points.
Step 2 consists of a nonlinear optimization routine to determine the intrinsic

parameters. Equations (4.6) and (4.7) can be rewritten as

f (p + q)− κ1(u + v)r2 = u + v, (4.10)

where p represents the right hand side of (4.6) and q represents the right hand
side of (4.7). With p > 2 calibration points, an overdetermined system of linear
equations can be set up and solved for κ1 and f :

[
p + q −(u + v)r2

] [ f
κ1

]
= u + v. (4.11)

These initial estimates for κ1 and f are then perfected with a nonlinear opti-
mization scheme to obtain an accurate solution. Details of both steps can be
found in [146].

4.3 Two View Geometry

In this section the relationship between two different views of the same 3D
points is investigated. One method considers the concept of projective trans-
formations, also known as homographies. Such homography describes the dis-
placement (translation and rotation) of a camera and is reconstructed from two
point sets of the same 3D points in the scene. The advantage of a homography-
based approach is that in human-centered environments, the scene is inher-
ently planar. This means that a rough approximation of objects and the scene
itself can be modelled by a plane, making the reconstruction problem signif-
icantly easier. The following derivation of a planar homography is followed
from [94], however, many other textbooks can also be consulted [43, 56].

Consider two images (I1, I2) of points p on a 2D plane Ip as depicted in
Fig. 4.3. The coordinate transformation between these two planes can then be
written as

x2 = Rx1 + t, (4.12)

where x1 ∈ R3 and x2 ∈ R3 are the spatial coordinates of p relative to camera
frames 1 and 2, respectively.

Let n = [n1 n2 n3]
T ∈ S2 be the unit normal vector of the plane Ip with

respect to the first camera frame, with d > 0 the depth from the optical center
of the first camera towards the plane Ip. This can then be written as

nTx1 = n1x + n2y + n3z = d ⇔ nT

d
x1 = 1, ∀x1 ∈ Ip. (4.13)
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H = R + tn
T

d

n n

I2
I1

Ip

Figure 4.3: Homography transformation H between image I1 and image I2. Ip

is the object plane that contains the feature points to be matched between the
two frames.

Substituting (4.13) into (4.12) will give

x2 = Rx1 + t = Rx1 +
tnT

d
x1 =

(
R +

tnT

d

)
x1. (4.14)

The planar homography matrix is therefore defined as

H
.
= R +

tnT

d
∈ R

3×3, (4.15)

since the transformation from x1 ∈ R3 to x2 ∈ R3 is defined as

x2 = Hx1. (4.16)

Due to the inherent scale ambiguity in the term t
d in (4.15), only a scaled trans-

lation can be recovered from H.

4.3.1 Homography Estimation

A common method to estimate a homography is known as the Direct Linear
Transform (DLT) and is derived as follows. Given a set of 2D to 2D point corre-
spondences, p′

1,i ↔ p′
2,i, a perspective transformation is written as p′

2,i = Hp′
1,i,

with i ∈ {1, 2, . . . , nip}. As this definition involves homogeneous vector trans-
formations, it can be expressed in the form of a vector cross product as

p′
2,i × Hp′

1,i = 0. (4.17)

With p′
2,i = [u2,i, v2,i, 1]T and p′

1,i = [u1,i, v1,i, 1]T , this results in



0T −p′T
1,i v2,ip

′T
1,i

p′T
1,i 0T −u2,ip

′T
1,i

−v2,ip
′T
1,i u2,ip

′T
1,i 0T


 h = 0, (4.18)
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where h = [h1, h2, h3, h4, h5, h6, h7, h8, h9]
T , as to be found in the homogra-

phy matrix as

H =




h1 h2 h3

h4 h5 h6

h7 h8 h9


 . (4.19)

It is common practise to omit the last row in (4.18), since only the first two rows
are linearly independent1. A detailed expression can be found as Ah = 0 or

[
0 0 0 −u1,i −v1,i −1 u1,iv2,i v1,iv2,i v2,i

u1,i v1,i 1 0 0 0 −u1,iu2,i −v1,iu2,i u2,i

]
h = 0.

(4.20)
where h = [h1, h2, h3, h4, h5, h6, h7, h8]

T .
Since each point correspondence provides 2 equations, 4 correspondences

are sufficient to solve for the 8 degrees of freedom of H. The resulting 8 × 9
matrix A is then formed and the 1D null space of A is the solution space for h.
If more than four point correspondences are given, the set of equations Ah = 0
is over-determined. Commonly, a cost function is evaluated that minimizes the
norm of h as |h| = 1. Since H is determined up to a scale factor, the actual value
to be minimized is not of importance. This resulting algorithm is commonly
known as the basic Direct Linear Transform (DLT) [56].

RANSAC

The homography estimation algorithm assumes a perfect match between cor-
respondences p1,i and p2,i. It is, however, very likely that many points, as ex-
tracted from an image, are mismatched or can not be matched at all. One algo-
rithm that separates the inliers from the outliers is known as RANSAC (RAN-
dom SAmple Consensus). RANSAC iteratively computes a homography from
4 points and uses this to classify all other correspondences. The iteration con-
taining the largest number of inliers is eventually chosen, from which a final H
is recomputed. The distance measure which classifies correspondences (de) is
chosen as the Euclidean distance between two points (i.e., de = |p′

2,i − Hp′
1,i|)

[44]. A correspondence pair is chosen to be part of a homography if de < dt, for
some threshold dt. The algorithm in recursive form is presented in pseudocode
in Algorithm 4.1.

Algorithm 4.1 RANSAC

1: Compute H from 4 randomly selected points
2: Select all the correspondence pairs that coincide with this H, i.e., if de < dt

3: Repeat step 1 and 2 until a sufficient number of correspondence pairs coin-
cide with H

4: Compute H from all coincided correspondence pairs

As it can become infeasible to try every combination of correspondence
points, a termination mechanism has to be employed to limit the number of
iterations. This can be done by choosing a probability (indirectly set by dt),
such that at least one of the random samples of the 4 points is free from out-
liers. A different, practical rule of thumb can be used that terminates the loop

1the third row can be obtained from the first and second row
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when the number of correspondence pairs is equal to the number of inliers as
to be expected in the data set [56].

4.3.2 Homography Decomposition

As stated in [94], a planar homography matrix of the form H = R + tnT

d has
at most two physically possible solutions for a decomposition into the compo-
nents {R, t, n}. From the fact that HTH is symmetric and has three eigenvalues
σ2

1 ≥ σ2
2 ≥ σ2

3 ≥ 0, and the fact that σ2 = 1 [94], the following decomposition
can be made:

HTH = VΣVT , (4.21)

where Σ is a diagonal matrix consisting of the singular values of HTH sorted
in decreasing order. With V = [v1, v2, v3], this can be rearranged as

HTHv1 = σ2
1 v1, HTHv2 = v2, HTHv3 = σ2

3 v3. (4.22)

Thus, v2 is orthogonal to both n and t, and its length is preserved under the
map H. Also, it can be checked that the length of two other unit-length vectors
defined as

u1
.
=

v1

√
1 − σ2

3 + v3

√
σ2

1 − 1
√

σ2
1 − σ2

3

,

u2
.
=

v1

√
1 − σ2

3 − v3

√
σ2

1 − 1
√

σ2
1 − σ2

3

, (4.23)

are also preserved under the map H. Furthermore, it can be verified that H
preserves the length of any vector inside each of the two subspaces

S1 = span{v2, u1}, S2 = span{v2, u2}. (4.24)

Since v2 is orthogonal to u1 and u2, [v2]×u1 is a unit normal vector to S1, and
[v2]×u2 a unit normal vector to S2. {v2, u1, [v2]×u1} and {v2, u2, [v2]×u2} then
form two sets of orthonormal bases for R3. In this, [−]× denotes the skew-
symmetric matrix determined from the associated vector. Notice that we have

Rv2 = Hv2, Ru1 = Hu1, R([v2]×u1) = [Hv2]×Hu1, (4.25)

Ru2 = Hu2, R([v2]×u2) = [Hv2]×Hu2, (4.26)

if n is the normal to the subspace S1 and S2. Defining the matrices

U1 = [v2, u1, [v2]×u1] ,

U2 = [v2, u2, [v2]×u2] ,

W1 = [Hv2, Hu1, [Hv2]×Hu1] ,

W2 = [Hv2, Hu2, [Hv2]×Hu2] , (4.27)

leads to
RU1 = W1, RU2 = W2, (4.28)
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which suggests that each subspace S1, or S2 may give rise to a solution to the

decomposition. By taking into account the extra sign ambiguity in the term tnT

d
we then obtain four solutions for the decomposition as





R1 = W1UT
1

t1
d = (H − R1) n1

n1 = [v2]×u1



 ,





R3 = R1
t3
d = − t1

d
n3 = −n1



 ,





R2 = W2UT
2

t2
d = (H − R2) n2

n2 = [v2]×u2



 ,





R4 = R2
t4
d = − t2

d
n4 = −n2



 . (4.29)

Due to the fact that the camera can only perceive points in front of it (i.e.,
a positive depth) the number of solutions reduces to two. Obtaining the cor-
rect solution from the remaining two can be done via several methods. For
instance, Vargas et al. show in [148] how the average of the two solutions (i.e.,
for the translation and rotation) can be used, such that the system will converge
in such a way that it is always possible to discard the false solution. Different
methods exist which use a second plane in the image [125] or a third image
[20] to estimate the common normal vector. Obvious difficulties arise in the
latter case where at start-up only two images are available. This problem can
be solved by selecting a virtual reference plane from the feature points, and
therefore also uses a second plane. Finally, having knowledge of the task to be
executed (i.e., the positioning motion), an estimate of this motion can as well
resolve the correct solution for the decomposition.

4.4 Keypoint Detection

As explained in Section 4.3.1, the motion transformation between two frames
(i.e., initial-pose to end-pose) can be determined from two image views. The
two main approaches towards retrieving a 3D motion transformation between
two views are marker-based methods and natural feature-based methods.

Marker-Based

Markers such as barcodes or Glyphs are known to achieve a high robustness
and repeatability regarding detection and matching for 3D motion estimation.
ARToolKit2 is one well-known software library and is used extensively in aug-
mented reality (AR) applications3. As markers are commonly designed as a
black pattern with a white background (see e.g., [17]), detection depends on in-
tensity thresholding and template matching for recognition. Even though com-
putationally inexpensive compared to natural-feature detection, this causes the
marker detection to be linear in the number of markers. When using multiple
markers in the field of view, performance may therefore be inadequate. Besides
this performance issue, the main drawback of marker-based motion estimation
is the presence of markers in the scene.

2see http://www.hitl.washington.edu/artoolkit
3see http://www.arlab.nl
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Natural Feature-Based

The second method for 3D motion retrieval uses features that are naturally
present on a object or in a scene. The approach encompasses that an object
as used for reference, can be encoded and reduced to a number of ’salient’
points. The transformation between these two views (or planes) can then be
estimated from the two point sets. In this, the detection of natural features (i.e.,
keypoints) and the correspondence matching between them is far more com-
putationally demanding. Furthermore, the presence of features on an object
or in a scene is highly object dependent. Keypoints tend to cluster locally and
uniform or unstructured patches can disturb or bias the decomposition of 3D
motion parameters [147].

Depending on the task at hand (e.g., offline detection or classification of ob-
jects, augmented reality applications or real-time visual servoing), several de-
tection and matching methods are available. A complete review of distinction
between different methods is beyond the scope of this work (see e.g. [147] and
[46] for a survey and review). Instead, a short introduction is given towards
(ideal) natural keypoints and following, the two most popular algorithms for
keypoint detection (i.e., SIFT and SURF) are recalled and their properties are
discussed. Afterwards, experimental results present a comparison between the
two detection methods.

4.4.1 Ideal Keypoints

The quality of a keypoint is based on a local patch of pixels, which means that
the main measure for detecting a keypoint has a spatial nature. Furthermore,
due to the discrete property of an image, the quality of feature detection de-
creases rapidly with decreasing image size (or feature size) and is amplified by
a limited availability of computational power and computation time. The key
consideration is therefore to find a balance between high-level interpretation
of keypoints and the disposable computational resources. Properties that an
ideal keypoint should encompass are listed as follows (see also [147]):

• Repeatability
Keypoints, observed and transformed by any viewpoint change (e.g.,
perspective, affine, scale) should be detected in both images.

• Distinctiveness
Different keypoints should differentiate from each other in the sense that
their local identity can be distinguished from other (similar) keypoints.

• Size
The amount of pixels used to define a keypoint, should relate to the dis-
tance (pitch) between keypoints (i.e., keypoints should not overlap).

• Density
The amount of keypoints as found in an image should reflect the infor-
mation present in an image. As such, the number of keypoints should be
tunable with simple heuristics.

• Time efficiency
Keypoint detection ideally has a deterministic timing layout and is linear
with increasing number of features.
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• Memory efficiency
The local identity of a keypoint must be encoded in a fixed vector with
limited memory resources.

• Detector quality/accuracy
The combination of all properties leads to a global output of the keypoint
detector that can be viewed as a quality measure. The main goal is to get
an as high as possible quality with as little as possible resources utilized.

Disturbances that have the greatest impact on aforementioned properties
are typical for any analog-digital conversion of signals. Noise and artefacts
due to discretization, (motion) blur and compression must be included in the
modelling of keypoint detection and matching such that these have an as low
as possible impact. Other disturbances, which cannot be taken into account
(or are not due to limited computational resources) are e.g., lighting artefacts
or shadow, occlusion, geometric distortion or additional information which
is not part of a reference image. Unavoidably, contradicting properties can-
not be satisfied at the same time. The primary example of this is the balance
between quality and computation time of the feature detector. One direction
to solve this issue is by employing different processors (e.g., GPU, FPGA) for
more computational resources, but even in this a limit is quickly reached.

From a historical point of view, the first detection methods mainly focussed
on detecting corners, whereas more recently blob-like features are popular
[147]. Both methods exploit the scale-space representation of an image, where
at multiple resolutions (scales) detection operators are executed (see Fig. 4.4).
Examples of corner-detectors are e.g., Harris-Laplace [103], which uses differ-
ential operators to find keypoints or FAST [121], which evaluates possible key-
points based on the surrounding intensity. Blob-detectors became of interest
when the invariance to scale of (basic) corner-detectors showed not sufficient.
Examples are the Laplacian of Gaussian (LoG) [8], the Difference of Gaussian
(DoG) as implemented in SIFT [93] or the Determinant of Hessian (DoH) as im-
plemented in SURF [7]. These detectors (i.e., SURF and SIFT) are typically de-
signed with strong descriptive properties and thus have a high computational
load. When the application requires descriptors with high repeatability and
low computational load due to a relatively small and smooth motion between
consecutive frames, other detectors can be used. For instance, in the field of
augmented reality (see e.g., [3]), commonly detectors such as FAST (Features
from Accelerated Segment Test) [121] or AGAST (Adaptive and Generic Accel-
erated Segment Test) [96] are employed. In particular, FAST is based on the
accelerated segment test (AST), which is a modification of the SUSAN corner
detector, as described in [136]. Similarly, the AGAST detector utilizes the same
corner criterion as FAST but provides a performance increase for arbitrary en-
vironments, i.e., only the way the decision trees for the AST are built and used
have been significantly improved (accelerated).

A brief comparison of different keypoint detection methods can be found
in Table 4.1, a thorough review can be found in e.g., [147]. As the task at hand
(i.e., real-time visual control) requires robust keypoint detection and strong
descriptors, the choice of possible detection algorithms is limited to SIFT and
its computationally cheaper version, SURF. These are explained in more detail
in forthcoming section.
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Table 4.1: Comparison of feature detectors (taken from [46])
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Corner detector x x x
Blob detector x x x
Rotation invariant x x x x x x
Scale invariant x x x x
Affine invariant x x x
Repeatability +++ +++ ++ +++ +++ +++
Localization accuracy +++ +++ ++ ++ ++ ++
Robustness ++ ++ ++ +++ ++ +++
Efficiency ++ ++ ++++ + ++ +++

Figure 4.4: Scale-space pyramid of reference image.
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4.4.2 Scale Invariant Feature Transform (SIFT)

This well-known work of David Lowe [93] can be summarized in a few steps:

1. Scale-space extrema detection,

2. Keypoint localization,

3. Orientation assignment,

4. Descriptor assembly.

The first step consists in computing the Difference of Gaussian (DoG) (which
is an approximation of the Laplacian of Gaussian (LoG)) and detecting scale-
space extrema across different scales. For this, a scale-space is created by con-
volving the image with a Gaussian blur at different octaves (i.e., images of
similar size form an octave, and subsequent octaves are a down-sampling of a
factor two) with different scales (i.e., level of blur). Following, DoG images are
taken from the difference of adjacent blurred images per octave.

Keypoints are then localized by fitting a 3D quadratic in scale-space and
taking the interpolated maximum as the actual keypoint location. Due to the
sensitivity along edges (i.e., poor location, but high edge response), a mea-
sure of principal curvature mp determines if candidate keypoints should be
discarded or not:

mp =
tr(Him)

2

det(Him)
, with Him =

[
Dxx Dxy

Dyx Dyy

]
, (4.30)

where the Hessian matrix Him of the image patch at the location and scale of the
candidate keypoint serves as curvature approximation. Moreover, D denotes
the second-order partial derivative of the Difference of Gaussian, and tr and
det denote the trace and determinant respectively.

The third step assigns an orientation to each keypoint based on the local
image gradient direction. In addition to changes in scale, the descriptor then
also becomes invariant to rotation. In order to compute this orientation, the
image of the pyramid that is closest in scale to the keypoint’s actual scale is
chosen. The gradient magnitude m(u, v) and orientation θ(u, v) at each pixel
of the image I are then pre-computed using pixel differences:

m(u, v) =
√
[I(u+1,v) − I(u−1,v)]

2 + [I(u,v+1) − I(u,v−1)]
2,

θ(u, v) = arctan

[
I(u,v+1) − I(u,v−1)

I(u+1,v) − I(u−1,v)

]
. (4.31)

Based on θ(u, v), a 36-bin orientation histogram, covering 10 degrees each,
is formed within a region around the keypoint’s location. Each sample added
to the histogram is weighted by m(u, v) and a Gaussian around the keypoint.
Peaks of the orientation histogram correspond to dominant directions of the lo-
cal gradients and the highest peak is used as the keypoint’s orientation. When
other peaks within 80% of the highest occur, additional keypoints are created
with the same location and scale as the original keypoint for each additional
orientation.
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In the last step, the distribution of local gradients are summarized in sev-
eral histograms around the keypoint and concatenated to form the descriptor
of length 128. After concatenating the histogram values in a single vector, nor-
malization is applied which makes the descriptor more robust to illumination
changes.

4.4.3 Speeded Up Robust Features (SURF)

The SURF [7] detector and descriptor is partly inspired by SIFT, however, de-
signed with the intention to have comparable (or better) robustness yet faster
computation. Like SIFT, SURF is based on the image representation in scale-
space and on differential operators for detection. These are speeded up by
using integral images (i.e., for finding the sum of a rectangular area) and box
filters.

Detection

In the detection step, keypoints are localized in scale-space by approximating
the Difference of Gaussian (DoG) by a Determinant of Hessian (DoH). This
DoH is effectively implemented as box filters Lb which can be accelerated effi-
ciently by using integral images.

det(Ĥim) = Lb,uuLb,vv − w2L2
b,uv. (4.32)

In this, the weight w is determined from the Frobenius norm of the approx-
imated determinant and the real determinant (i.e., w ≈ 0.6). Keypoints are
finally selected by using non-maxima suppression and scale-space interpola-
tion.

The local orientation of each keypoint in scale-space is computed from the
local neighbourhood around each keypoint in both directions. Again for faster
computation, SURF employs scale-adapted Haar wavelets and integral images.

As orientation calculation can be an extra source of error, an upright version
of SURF exists, denoted U-SURF. This method simply skips the orientation step
by assigning each keypoint a zero orientation.

Descriptor

The descriptor of SURF keypoints are build upon the keypoint’s orientation
and gradient. The gradients are computed in an oriented 4 × 4 window of
scale-adjusted size. The sums of gradients and the sums of absolute gradi-
ents are determined in both directions, yielding a 4-vector for each sub-region.
Combining these produces a descriptor length of 64, which is normalized as
final step for robustness against illumination changes.

4.5 Experimental Comparison

An experimental comparison of discussed keypoint detectors and descriptors
will give more insight into their properties, benefits and shortcomings. Follow-
ing, experiments are carried out to distinguish between SIFT and SURF as well
as an analysis to assess their performance towards different translations and
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rotations. Furthermore, the estimation and decomposition of the homography
is also examined.

4.5.1 SURF versus SIFT

A first comparison is made between the two keypoint detectors and descriptors
as presented in Section 4.4.3 (SURF) and Section 4.4.2 (SIFT). Even though rig-
orous analyses between both has been a popular topic (see e.g. [104] or [147]),
we compare SURF and SIFT with respect to the number of detected keypoints,
number of matches and computation time. This evaluation can be seen in
Table 4.2.

Table 4.2: Comparison of SIFT and SURF keypoint detector and descriptor

SURF SIFT
Hessian threshold 800 1200 1200 Edge threshold 0.04 0.04
Octaves 4 2 2 - -
Octave scales 2 2 1 2 3
Keypoints

Reference 523 244 135 794 1369
Current 350 130 60 2300 4300
Matches 200 70 30 90 170

Comput. time [ms] 260 140 100 1300 1600

For the SURF detector and descriptor three experiments with different pa-
rameters are performed, for the SIFT detector and descriptor two experiments
are performed. Each keypoint detection and matching experiment is executed
1000 times, from which an average number of keypoints, number of matches
and computation time is computed. For the reference image only one detection
step is necessary.

A first observation shows that SIFT is an order of magnitude slower than
SURF. Secondly, the fact that for SIFT the number of octaves is determined au-
tomatically from the image resolution, makes it difficult to control the number
of found matches and thus the computation time. For SURF a rough relation
can be observed between the parameters of detection (i.e., octaves and octave
scales), the number of found keypoints and consequently the time of computa-
tion. A trade-off has then to be found between the accuracy and repeatability
of keypoint detection and matching and the available computation time. A
comparison of SIFT and SURF with different parameters is shown in Table 4.2.
In this, individual experiments are separated per column. The parameters of
SURF (i.e., Hessian threshold, number of octaves and number of octave scales)
can be altered in a more straight-forward way than the parameters of SIFT (i.e.,
edge threshold and number of octave layers). This is mostly due to the auto-
matic computation of the number of octaves for SIFT. Furthermore, the num-
ber of found keypoints in a reference image and a current image differ quite
significantly between SIFT and SURF. Despite the fact that SIFT detects more
keypoints, this does not directly give an advantage in the keypoint matching
process, as the number of matched points between the two methods is roughly
similar. The biggest difference therefore, is the computation time. As the com-
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putation time of SIFT is an order of magnitude greater than SURF, a real-time
implementation with SURF would therefore be more favourable.

Fig. 4.5 shows a reference image (right) and the reference image found in
a current view (left). The circles represent the keypoints, where the size of the
circles depicts the scale in which the keypoint is detected. From the reference
image it can be seen that certain areas in the image provide more keypoints
than other areas. This local clustering of keypoints is a logical result of the key-
point detection process as images with high information content (e.g., many
corners or intensity changes) can be represented in more detail than images
with large uniform areas. In the current view in Fig. 4.5 (left) it can be seen
that the reference image is partly blocked. A consequence of this is that not all
correspondence points can be matched and only a part of the reference image
is ’found’. Obviously this does not benefit the accuracy of the homography
estimation and subsequently the translation and rotation decomposition. The
importance of utilizing reference images with high information content over
the whole image as well as over the whole scale-space range is therefore essen-
tial. A second example can be seen in Fig. 4.6.

Figure 4.5: Current view image of a blocked comic book (left) and a reference
image of a comic book (right). The circles represent the found keypoints, where
the size of the circles depicts the scale in which the keypoint is detected. The
left image also shows the found reference image which is outlined with a rect-
angle.
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Figure 4.6: Example of SURF detector and descriptor. A relatively large num-
ber of false positive keypoints are detected which are discarded via the key-
point matching process. Despite the difference in image intensity, the reference
image is found in the current image, as is indicated by the white rectangle.

Figure 4.7: Example sequence of reference images (soup box) for performance
evaluation of SURF.

4.5.2 Performance of SURF

In order to asses the performance of the SURF detector and descriptor for real-
time visual servo control, a number of experiments have been carried out.

The accuracy and repeatability of the homography decomposition into a
rotational and translational difference is assessed by experiments with several
offsets. For the rotational decomposition 7 different orientations with a 10 de-
gree interval are used (see e.g., Fig. 4.7). For the translational decomposition 5
different translation are used. The parameters of the SURF detector are taken
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as the second column in Table 4.2, which give a decent balance between com-
putation time and performance. The object (i.e., the comic book and the soup
box) is translated and rotated in each particular direction and orientation until
the position and angular offset is reached. This configuration is maintained
for 1000 iterations, to limit the influence of outliers. The performance is sub-
sequently assessed by standard error evaluation measures (i.e., mean and 3σ).
Table 4.3 shows the results of these experiments.

A first observation shows the limited accuracy and repeatability for deter-
mining an accurate orientation measurement. Even in an ideal case, a zero
degree orientation, the average measurements are only accurate up to tenths
of a degree and exacerbates with increasing orientation offset. The repeatabil-
ity results show a similar trend, where a larger orientation offset results in a
larger standard deviation (3σ). The decreasing accuracy for larger offset an-
gles is due to several factors. First, an imperfectly calibrated vision system will
project the scene distorted on the vision sensor and will therefore give incor-
rect measurements. Secondly, the local clustering of keypoints will bias the
homography estimation. If more keypoints are detected in one area, this area
will account for a higher accuracy than an area with less keypoints. In an ideal
situation, keypoints should have a uniform distribution, however, in a real sit-
uation (e.g., with random images), this is never the case. For instance, it can be
seen in Fig. 4.5 and Fig. 4.6 that the distribution of keypoints depends highly
on the information content (i.e., texture or non-uniformity of patches) of the
image. Moreover, the decrease in accuracy can particularly be observed for es-
timation involving depth. For instance, the roll angle accuracy is slightly better
since depth is not involved. A logical reasoning for this is the limitation in sen-
sor resolution as objects closer to the camera will cover more pixels than objects
further away. Moreover, when the object is rotated in yaw and pitch, the cov-
ered area of the object becomes smaller which limits the number of pixels for
detection as well.

As the estimation of the translation can only be observed up to a scale fac-
tor, this does not include a metric value. Experiments are carried out similarly
to the orientation estimation and can be found in Table 4.3. It can be observed
that the accuracy and variability (3σ) in x- and y-direction is worse than for
the z-direction. This is most likely due to the fact that for a larger offset in x
and y direction the object partially leaves the field of view. This leads to an
incomplete reconstruction of the reference object, as a part of the object is sim-
ply missing. Again here, local clustering of keypoints (i.e., the non-uniformity
in distribution of keypoints) can play a significant role, as the remaining key-
points can be biased as well. This can for instance occur when a part of the ob-
ject is missing which contains the most keypoints. Clearly this does not occur
as severe for a depth translation, however, similarly to the orientation estima-
tion, the fact that objects further away cover less pixels will have an effect as
well.

The choice of keypoint detector and descriptor depends highly on the task
at hand and can be tailored to the expected motion and required level of invari-
ance. A logical approach is to proceed with the most robust detector, to cover
all possible types of invariance, however, this is not necessarily the best choice.
In fact, as mentioned in literature [147], it is often better to rely on the robust-
ness of the keypoint detector and descriptor rather than to increase the level
of invariance. For instance, when the expected transformations are relatively
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Table 4.3: Comparison of SURF keypoint detector and descriptor

angle offset -30 -20 -10 0 10 20 30
[deg]

roll
mean -29.77 -20.25 -10.27 0.78 10.18 20.53 30.32
3σ 1.54 1.26 0.89 0.41 1.14 1.42 1.72

pitch
mean -31.30 -20.98 -9.06 0.67 10.56 21.21 31.05
3σ 2.21 1.67 1.11 0.66 1.39 1.99 2.14

yaw
mean -30.44 -20.76 -10.98 0.53 10.06 20.28 30.37
3σ 2.87 1.78 1.48 0.77 1.24 1.36 2.43

position offset -200 -100 0 100 200
[-]

x
mean -199.10 -100.37 0.21 90.41 200.56
3σ 5.47 3.76 2.68 3.53 4.27

y
mean -200.55 -99.20 0.83 100.55 198.78
3σ 4.25 3.86 1.79 2.95 2.66

z
mean -19.84 -9.94 0.24 10.54 20.21
3σ 2.55 1.9 2.06 2.17 2.34

small, invariance to e.g., perspective transformations are of little use. More-
over, as also claimed by Lowe [93], the additional complexity of full affine-
invariant features often has a negative impact on their robustness and does
not pay off, unless really large viewpoint changes are to be expected. In some
cases even rotation invariance can be left out, resulting in only a scale-invariant
version of the descriptor (e.g., as upright- or U-SURF).

Finally, one issue that is worth mentioning is the relationship between cov-
erage of keypoints and a transformation between viewpoints. If the distribu-
tion of keypoints in an image is insufficient (either due to clustering or a low
number of keypoints), effects due to the transformation between views may
be missed or incorrectly reconstructed. A logical solution is to ensure a high
amount of keypoints in the image, however, this can not always be guaranteed
(e.g., due to a uniform image patch) or might be too computational intensive.
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4.6 Summary

This chapter discussed the modelling of 3D vision. As such, the goal of this
chapter is to determine the ideal keypoint detector and descriptor as well as to
determine a method which transforms these image measurements into a use-
ful 3D Cartesian error pose. The modelling of vision starts with a model of the
camera and the lens. The pinhole camera model is presented and one method
for camera calibration is discussed in more detail, i.e., Tsai’s camera calibra-
tion method. The relationship between two views is analytically defined as
the concept of projective transformations, also known as homographies. Such
planar homography describes the displacement (translation and rotation) be-
tween a current view and a reference view, and can be reconstructed from two
point sets of the same 3D points of a reference image. A mathematical defini-
tion and estimation of this homography is given and the decomposition into a
translational and rotational part is derived in detail.

Following, an introduction towards keypoint detection is addressed, which
includes a brief overview of ideal keypoints and existing keypoint detectors.
The compared keypoint detectors can be divided as either corner detectors (i.e.,
Harris, Shi-Tomassi, FAST, AGAST) or as blob detectors (i.e., SIFT, SURF, Cen-
SurE). Both methods exploit the scale-space representation of an image (i.e., at
multiple resolutions (scales) detection operators are executed), which means
that at the complete depth range keypoints will be found. A second differ-
entiation is noted by the descriptive properties of a keypoint detector. Blob-
detectors are typically designed with strong descriptive properties, which sug-
gests a high computational load. When the application involves small motion
between consecutive frames, weaker descriptors (and thus low computational
load) are sufficient and detectors such as FAST or AGAST can be used. The ap-
plication intended in this work involves large motion differences and, as such,
strong descriptors are a necessity. Therefore, SIFT and SURF are experimen-
tally compared from a computational and performance point of view with two
different reference images. The results show that SURF is more suitable due to
its computational advantages (i.e., robust keypoint detection with 70 matches
in 140 [ms] and thus an order of magnitude faster than SIFT) and the ability
to tune between number of found keypoints and processing time. Finally, the
subsequent processing to obtain a pose difference between current and refer-
ence image is analysed with respect to accuracy and repeatability. From this
the following conclusions are drawn. The accuracy and repeatability of a rota-
tion and translation estimation is highly affected by the clustering of keypoints.
That is, if detected keypoints are not uniformly distributed over the reference
image, this causes a bias on locally clustered keypoint patches. This effect can
also be identified in cases where the reference object is partly outside the field
of view or is located at a relatively large depth. In both cases the found images
will not contain the similar amount of keypoints as detected in the reference
image.
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CHAPTER 5

Visual Control of Robotic
Manipulators

Abstract. This chapter presents in detail the traditional approaches in

vision-based robot control as well as a novel hybrid visual servoing ap-

proach. The proposed method combines traditional position-based visual

servoing with image-based measurements to form a feedforward visual

control law. The method is motivated to maintain objects in the field-of-

view while designing motion in Cartesian space. Simulation and experi-

mental results are presented and show the effectiveness of the novel ap-

proach.

5.1 Introduction

Visual servoing is defined as the motion control of a robot by means of visual
feedback. Executed either in Cartesian space R3 or image space R2, the goal
of vision-based control is to regulate a set of measured variables f(m(t), γ)
towards a set of desired variables fd:

f(m(t), γ)− fd = e → 0. (5.1)

In this, m(t) represents a set of k measured features (i.e., for one 2D image point
k = 2) and γ represents a set of parameters containing additional information
(e.g., intrinsic camera parameters, 3D object model). The standard approach is
to design a velocity controlled system and derive a relationship between the
velocity of the measured variables ḟ and the velocity of the camera vc:

ḟ = Levc, (5.2)

where Le ∈ Rk×6 is referred to as the interaction matrix. A velocity control
reference can then be derived by inverting (5.2) as:

vc = L−1
e ḟ, (5.3)

assuming Le is square (i.e., when k = 6) and non-singular. Otherwise, when Le

is of full rank 6, the Moore-Penrose pseudo-inverse L†
e = (LT

e Le)−1LT
e should

be used [31]. As will be shown in the following chapters, this condition (i.e.,
k ≥ 6), is ensured as follows. For position-based feedback, commonly, a 3D
pose is measured or estimated, ensuring that k = 6. For image-based feedback,
commonly n > 3 image points are measured, and, as one image points gives
a 2D measurement, its is ensured that k > 6. From (5.1) it follows that ė = ḟ,
which states that the feature error velocity is equal to the measured feature
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velocity. Choosing an exponential decrease of the feature error (i.e., ė = −λe,
where λ is a positive gain factor) then results in

vc = −λL†
ee. (5.4)

This control structure represents the general relationship between the ve-
locity of the camera vc and the error velocity of the observed features e. A dis-
tinction between different visual control methods can be made by regarding
different camera and robot architectures (e.g., camera location, type of image
variables, see also Section 2.2), which is translated to the interaction matrix.
In this chapter, the developments for visual control of robotic manipulators is
limited to eye-in-hand configurations. That is, the camera is located on the
end-effector of the manipulator.

The remaining contents of this chapter are as follows. A review on the ba-
sic approaches of visual servoing is presented, with a brief analysis of stability.
Following, a novel approach is proposed which combines image-based and
position-based visual servoing into one control law. This method is motivated
to keep features in the field-of-view, while designing camera motion in Carte-
sian space. Finally, a stability analysis, as well as simulation and experimental
results are presented.

5.2 Traditional Visual Servoing Approaches

An overview is made of a few existing visual servoing methods: Position based
visual servoing (PBVS), image based visual servoing (IBVS) and a combina-
tion of both methods, also known as hybrid visual servoing. The methods
discussed are known as indirect visual servoing, which implies that an outer
control loop designs motion based on visual measurements, and a local joint
control loop guarantees that the designed motion will be executed (see Fig. 5.1,
Fig. 5.2 and Fig. 5.3). As this topic is already treated in great detail in literature,
this overview follows largely the well-known tutorials [23, 24].

5.2.1 Position Based Visual Servoing

In accordance with the notation of (5.1), PBVS defines the feature vector f(γ)
in Cartesian space between an initial pose xI ∈ R6 and a final pose x f ∈ R6 of

the end-effector (see Fig. 5.1). As such, the feature vector f(γ) involves only
intrinsic camera parameters and the 3-D model of the object.

The pose error e is defined as the difference between the two poses: e =
[x f − xI ]

T = [te, θu]T , in which te is an error translation vector, and θu gives
the angle/axis parametrization for the rotation error. One choice of te defines
the translation error with respect to the camera frame Fc as te = tc − tc,d, with
tc,d = 0 and thus te = tc. The interaction matrix, that relates the camera veloc-
ity and the error velocity as ė = Levc, can then be written as:

Le =

[
R 0
0 Lθu

]
, (5.5)

in which R represents the rotation matrix between current and desired frame
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Figure 5.1: Block diagram of position-based visual control scheme (PBVS).

and Lθu is defined as

Lθu = I3 −
θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2×, (5.6)

where sinc(θ) is defined knowing that θsinc(θ) = sin(θ) and sinc(0) = 1 and
[u]× is the skew symmetric matrix determined from vector u. In this,

θ = acos

(
trace(R)− 1

2

)
, and

u =
1

2 sin(θ)




R32 − R23

R13 − R31

R21 − R12


 . (5.7)

To obtain an exponential minimization of the error (i.e., ė = −λe, where λ is a
gain factor) the control law is set as

vc = −λL̂−1
e e, (5.8)

where L̂−1
e is an approximation of the real (inverted) interaction matrix L−1

e

and is defined as

L̂−1
e =

[
RT 0

0 L−1
θu

]
. (5.9)

The camera velocities are then written as

vc =

[
υc

ωc

]
=

[
−λRTtc

−λθu

]
. (5.10)

This PBVS approach lets the camera trajectory follow a straight line, while the
image trajectory does not. The consequence is that configurations exist for
which image features (i.e., the object) may leave the field-of-view.

A different choice of te defines the translation error with respect to the ob-
ject frame Fo as te = to − to,d. The interaction matrix, that relates the camera
velocity and the error velocity as ė = Levc, can then be written as:

Le =

[ −I3 [to]×
0 Lθu

]
, (5.11)
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in which I3 is the 3 × 3 identity matrix, [to]× is the skew symmetric matrix
determined from vector to and Lθu is defined as (5.6).

The control law is set similar to (5.8), where the inverse of the interaction
matrix is determined as

L̂−1
e =

[ −I3 [to]×L−1
θu

0 L−1
θu

]
. (5.12)

The camera velocities are then written as

vc =

[
υc

ωc

]
=

[ −λ(te + [to]×θu)
−λθu

]
. (5.13)

This PBVS approach lets the translational and rotational motion decrease ex-
ponentially and lets the rotational motion follow a geodesic. Furthermore, the
image trajectory follows a straight line, implying that the camera trajectory
does not.

The stability of PBVS can be evaluated by considering Lyapunov’s direct
method [75]. Consider the squared error norm as candidate Lyapunov func-

tion: L = 1
2 eTe. Using ė = Levc and (5.8), the derivative is then written as

L̇ = eTė = −λeTLeL̂−1
e e. (5.14)

For global asymptotic stability the following condition should be satisfied:

LeL̂−1
e > 0. (5.15)

The interaction matrix Le is non-singular as long as θ 6= 2ksπ for ks 6= 0. Practi-
cally speaking this ensures global convergence since the camera opening angle
restricts θ as |θ| < 2π. Furthermore, when the pose estimation is perfect, it

follows that LeL̂−1
e = I6 and global asymptotic stability can be ensured [23].

5.2.2 Image Based Visual Servoing

In accordance with the notation of (5.1), IBVS defines the feature vector
f(m(t), γ) in image space and control is executed by minimizing the error be-
tween current and desired feature vector as defined by (5.1) (see Fig. 5.2). As
such, m(t) denotes the image measurements (i.e., points, lines) and γ now only
contains the camera intrinsic parameters. This means that measurements are
taken directly from the image plane and used as feedback. In the most basic
form these image measurements are a set of 2D feature points p = [u, v]T ∈ R2.
Other image measurements are e.g., lines [42] or image moments [140].

The explicit derivation of the interaction matrix for point features can be
found by differentiating (4.1) with respect to time and finding the relationship
between the velocity of the feature point and the velocity of the end-effector as

Le =




f
z 0 − u

z − uv
f

f 2+u2

f −v

0
f
z − v

z
− f 2−v2

f
uv
f u


 , (5.16)

where f is the focal length of the camera. Depending on the number of feature
points n, this interaction matrix is then inverted according to (5.3) or (5.4).
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Figure 5.2: Block diagram of image-based visual control scheme (IBVS).

When considering multiple feature points, these can be stacked together in
a composite point feature vector f = [pT

1 , . . . , pT
n ]

T ∈ R2n and the interaction
matrix can be formed as

Le =




Le,1(u1, v1, z1)
...

Le,n(un, vn, zn)


 . (5.17)

One issue is the fact that the depth z of feature points is not directly mea-
sured and has to be estimated. This means that the estimated interaction matrix
L̂e must be used for feedback.

The stability analysis of IBVS follows the same method as for PBVS. With

the Lyapunov function L = 1
2 eTe we obtain

L̇ = eTė = −λeTLeL̂−1
e e. (5.18)

Again, in order to ensure global asymptotic stability it has to hold that

LeL̂−1
e > 0. (5.19)

To proceed, we consider the case when the number of image features is greater

than three: n > 3. As LeL̂†
e can be at most rank 6, it has a non-trivial null space.

Therefore, configurations such that e ∈ N (L̂†
e) exist for IBVS with more than

3 image features. The physical consequence of this is that local minima exist
for which the error e is nonzero (i.e., f(m(t), γ) 6= fd), while a zero velocity
command is executed (i.e., vc = 0). In fact, when n = 3, four distinct and
undistinguishable camera poses exist for which e = 0 [102].

Because of this issue, usually more than three feature points are used. Fur-
thermore, it can only be proven that in some neighbourhood of e = 0, no local
minima can be encountered. The conclusion is that for IBVS only local asymp-
totic stability can be ensured.
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5.2.3 Hybrid/Partitioned Approaches

Hybrid visual servoing entails that both previous methods (IBVS and PBVS)
are combined into one new visual control law [40, 48], meaning that the feature
vector f now contains a mixture of 2D image information and 3D Cartesian
information.

2-1/2D Visual Servoing

A typical hybrid method, known as 2-1/2D visual servoing, decouples the rota-
tional DOF from the translational DOF. The rotational part is then controlled by
PBVS and the translational part is controlled by IBVS. As such, the algorithm
takes advantage of the robustness properties of IBVS and the stability proper-
ties of PBVS. This is therefore the reasoning behind its name; a combination of
control in 2D image space and 3D Cartesian space.

Let f(m(t), γ) = [pT , log(z), θu]T ∈ R6 be the feature vector, where θu is
again the parametrization of the rotation error, p = [u, v] the image measure-
ment in pixels and z the associated depth. The error e = f(m(t), γ) − fd can
then be written as e = [p − pT

d , log(z/zd), θu]T and the interaction matrix is
found as

Le =

[
Lv Lω

0 Lθu

]
, (5.20)

where

Lv =
1

zd(z/zd)




−1 0 u
0 −1 v
0 0 −1


 , and Lω =




uv −(1 + u2) v
1 + v2 −uv −u
−v u 0


 ,

(5.21)
in which z/zd is defined as det H; the determinant of the homography matrix
and Lθu is given by (5.6). As the depth parameter zd is not directly measured,
this has to be estimated or can be adapted online, for which methods can be
found in [37] and [95].

The stability conditions of 2-1/2D visual servoing can be evaluated quite
straightforward. The fact that Le is a 6 × 6 upper triangular matrix, global
asymptotic stability can be proven when ideal conditions apply (i.e., perfect
pose estimation) [98].

Kyrki’s method

A hybrid approach similar to 2-1/2D visual servoing proposed by Kyrki et al.
in [86] controls 2 rotational degrees of freedom (i.e., Rx and Ry) purely from
image data. The error vector for visual control is defined as e = Levc =[
te, te,x, te,y, θuz

]T
, where Le is defined as

Le =




I3 03

Lib

lr


 , (5.22)

in which I3 is 3 × 3 identity matrix, 03 is a 3 × 3 zero matrix, Lib is identical to
(5.16) and lr = [0, 0, 0, 0, 0, 1]. This hybrid method is motivated by guaran-
teeing both a shortest Cartesian trajectory and object visibility. Evaluating the
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determinant of the interaction matrix (in terms of the object position) shows
that one degenerate case exists [86]:

det Le =
x2 + y2 + z2

z2
, (5.23)

which is zero when all x, y and z are zero, that is, when the camera is exactly
at the origin of the object. Fortunately, this configuration is not physically pos-
sible.

5.2.4 Comparison of Traditional Methods

The differences between the traditional methods in visual servo control can be
easily explained from their method of control. The obvious fact that for PBVS
the control is executed in Cartesian space results in a motion that is favourable
in Cartesian space. Similar conclusions can be drawn from IBVS, where the
image trajectory is a pure straight line and the camera motion is not taken into
account. Besides these obvious differences, the robustness properties of both
methods against noise is another point of interest. The fact that IBVS methods
are more robust against image noise and camera calibration errors makes it
particularly attractive for practical implementation. A downside, however, is
the existence of local minima with large camera motions or singularities in the
interaction matrix.

For hybrid methods the motion is mixed due to the design of the control in
both image and Cartesian space. In particular, considering 2-1/2D visual servo-
ing [99, 98], the translational motion is controlled by measurements in image
space and the rotational motion is controlled by position-based measurements.
As such, this decoupled method takes advantage of the robustness properties
of IBVS and the stability properties of PBVS. The hybrid method developed
by Kyrki et al. [86] controls the translational motion with PBVS and two ro-
tational DOFs (pan and tilt) with IBVS. The remaining rotational DOF is also
controlled with PBVS. The resulting motion has the property to maintain ob-
jects in the field of view. This, however, is also the drawback of the approach,
as a different desired rotational motion becomes particularly difficult to design.

This last conclusion can be drawn for most image-based methods. When an
image-based approach is solely used for control, the design of motion is limited
to the image space. As this space practically only consists of two dimensions
and can not directly be transformed to the Cartesian space, the resulting motion
will be relatively limited.

Consider for instance the task, where an object should be kept in the field
of view, while motion in Cartesian space should be deterministic (or at least
a straight line in translation). The traditional methods (IBVS and PBVS) both
do not fulfil these requirements. In short PBVS does design shortest paths,
however, image features might leave the field of view, while IBVS disregards
Cartesian space completely. The hybrid methods (2-1/2D visual servoing and
Kyrki’s method) do not suffice as well. For 2-1/2D visual servoing, as the trans-
lation motion is controlled by image data, trajectories in Cartesian space may
not be designed as a shortest path. On the other hand, while Kyrki’s method
should give appropriate results, the fact that no Cartesian offset can be added
to the pan- and tilt DOFs, motion design is fairly limited.
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This analysis therefore gives rise to the development of a novel method that
takes these requirements as main objective: a Cartesian intuitive motion design
while guaranteeing the field-of-view constraint.

5.3 Feedforward Visual Servoing

As discussed in Section 5.2 both image-based and position-based visual servo-
ing has its positive and negative properties. In short, image-based feedback
lacks the design of motion in Cartesian space, while position-based feedback
has no control over the trajectories in image space. Combining both methods
in one approach can therefore result in an improved performance as seen by
hybrid or partitioned approaches. In this section a method is proposed that
merges an image-based feedforward control action with position-based visual
servoing.

Similar to encoder-based motion systems, a feedforward control action is
commonly applied when disturbances are present which are known before-
hand (e.g., gravity, friction) and can therefore be compensated for. Extend-
ing this concept to the visual domain will result in a similar compensation re-
sponse. More specifically, if a 2D image-based feedforward action is added to
rotational control of PBVS, this will maintain objects in the field-of-view. This
approach is developed in more detail in forthcoming section.

5.3.1 Field-of-View Constraint

The constraint of maintaining features in the field-of-view can be defined as
a rectangular bound of the image sensor, which, for one image feature point
p = [u, v]T ∈ R2, is stated as

u ∈ [umin, umax], umin, umax ∈ R,

v ∈ [vmin, vmax], vmin, vmax ∈ R. (5.24)

As long as the feature point p stays within this bound the constraint is sat-
isfied. Fig. 5.3 shows the block diagram of this control scheme. In this, xt is
the target pose, which changes with every visual update, depending on the
current pose xc. Together with an image-based angle towards the target êθ , xt

is changed into a reference pose xr, which is used for PBVS.

5.3.2 Image-Based Feedforward

2D image measurements can be obtained as a single point or a set of points,
from which a mean point is computed. Considering a single point, basic image
processing algorithms can be employed to obtain robust measurements (e.g.,
color blob detection, circle detection). A more complex approach employs ad-
vanced image processing algorithms such as SIFT or SURF for feature point
detection (see Section 4.4). Although fairly computational intensive, this ap-
proach also enables a reliable computation of the pose error (see Section 4.3),
which can also be used for vision-based control. The latter is the method of
choice for our hybrid visual servoing approach where SURF features are used
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Figure 5.3: Block diagram of proposed visual control scheme (FF PBVS).

for both image- and position-based feedback. The object as used for reference
is highly textured and planar (see Fig. 4.4 and Fig. 4.7 in Section 4.5).
For the image based error, the mean of a set of n object points p̄o is defined as

p̄o =
1

n

n

∑
i=0

po,i, (5.25)

where po,i = [uo,i, vo,i]
T.

As the image-based error is combined (i.e., added) with a position-based
control law, the image point has to be transformed to Cartesian space. More
precisely, the 2D image-based error is used as a 2D rotation feedforward term.

The angle relative towards the target eθ = [θx, θy]T is estimated as the differ-
ence in image coordinates from the mean of the object points p̄o and the center
of the image p0 = [0, 0]T as êθ = [θ̂x, θ̂y]T = [p̄o − p0], since it is assumed that
êθ ∝ eθ for the camera’s FOV. Therefore, the 2D rotation term is bounded by a
hyperbolic tangent function defined as

eθ,x = θ̂x ± θx, f , where θ̂x = cθ,x tanh(co,u p̄o,u),

eθ,y = θ̂y ± θy, f , where θ̂y = cθ,y tanh(co,v p̄o,v), (5.26)

where cθ,x and cθ,y are constant scalars that limit θ̂x and θ̂y, since lim
x→∞

tanh =

1, and lim
x→−∞

tanh = −1. Furthermore, co,u and co,v are constant scalars tuned

such that êθ ≈ eθ . The fixed angles θx, f and θy, f are computed from the differ-
ence between current pose xc and the target pose xt by simple trigonometry. If
only fixed angles where given, the control law would essentially be pure PBVS.
With the estimated angles êθ , a control system is created that acts as a feedfor-
ward term on the reference pose. This creates an overshoot of the reference
pose which dies out due to the decrease of the image error.

5.3.3 Feedforward and Position-Based Visual Servoing

The combination of the feedforward control action with PBVS is developed as
follows. For position-based visual servoing, the control scheme is chosen with
the translation which designs a straight line in Cartesian space. The camera
velocities which achieve this are defined as (5.8) or

vc = −λL̂−1
e e, (5.27)
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where the interaction matrix is defined as in (5.9) and e = [te, θu]T = [eν, eω ]T .
The components for translational control are unaltered.

As stated earlier, the fact that the image trajectory will not be a straight line
can cause the camera to lose the image features. This loss of features is now
ensured by adapting the rotational motion θu as:

θu =




θ̂x ± θx, f

θ̂y ± θy, f

θuz


 . (5.28)

The details of the individual entries can be found from (5.26).
This results in a rotation reference trajectory eω = [eθ,x, eθ,y, θuz]T = θu

that can oscillate and not necessarily points towards the object. The camera’s
normal vector n, however, does point towards the object at all times, enabling
a continuous fixation on the object for recognition or exploration.

Concluding, as the core control method is position based visual servoing,
the interaction matrix for control is therefore similar as presented in Section
5.2.1. To ensure the field-of-view constraint, only the reference for rotational
control is altered to include an image-based feedforward term.

5.3.4 Stability Analysis

Consider the squared error norm as candidate Lyapunov function: L = 1
2 eTe.

Using ė = Levc and (5.8), the derivative becomes

L̇ = eTė,

= −λeTLeL̂−1
e e. (5.29)

In this, the error vector e is expressed as e = [th, θu]T, where
θu = [θ̂x ± θx, f , θ̂y ± θy, f , θuz]T. Although e is different from normal PBVS
and Lθu and therefore Le is incorporated differently due to an added estimated
rotation, still the stability proof for traditional PBVS can be used. Although
already restricted by the opening angle of the camera, it is enforced that

|θ̂x|+ |θx, f | < 2π, and |θ̂y|+ |θy, f | < 2π, (5.30)

which gives a singularity in Lθu. For global asymptotic stability the following
condition should be satisfied:

LeL̂−1
e > 0. (5.31)

If L̂−1
e = L−1

e , meaning the pose estimation is perfect, it follows that LeL̂−1
e =

I6, and global asymptotic stability can be ensured [23].

5.4 Simulation and Experimental Results

Simulations are carried out by using the Robotics [32] and the Epipiolar Geom-
etry [100] Toolboxes for Matlab. To simulate visual feature detection, a set of
30 random points is generated, from which two views are created with a per-
spective transformation. These two perspective point sets are then input to the
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homography estimation and decomposition, which determines a rotation and
translation difference for control. Normally distributed random noise is added
to the points with zero mean and 5% standard deviation.

5.4.1 Experimental Setup

Experimental results are obtained with a 7-DOF redundant manipulator, where
the camera is located on the end-effector (eye-in-hand, see Fig. 5.4). The im-
plementation of the direct and differential kinematics, as well as the homoge-
neous solution for redundancy, are translated to and optimized for C/C++, and
implemented using the Eigen library for vector and matrix manipulation. This
is wrapped inside a ROS [117] node for high-level functionality and low-level
device control. As all processing is executed on a standard notebook, commu-
nication with the manipulator is done via a CAN-USB device, with different
threads managing the data exchange with the CAN device (one for reading
and one for writing). As is typical for vision-based control, a low-level PD joint
controller is executed for each joint, with an update rate of 1 [kHz]. More de-
tails on the manipulator, the modelling and the implementation can be found
in Section 8.3.1 and Appendix B.

For visual processing, an industrial camera (Prosilica GE680M, communi-
cating via Gigabit Ethernet) takes grayscale images which are processed using
the computer vision library Opencv [14]. The SURF feature detector as pre-
sented in Section 4.4.3 and subsequent homography estimation and decompo-
sition as presented in Section 4.3.1 and Section 4.3.2 provides a rotation and
scaled translation between two views. These detected features are also used
to estimate the image-based rotation measurement for the feedforward con-
trol action. This vision algorithm is executed at 10 Hz with an image size of
640 × 480 [px] (VGA).

Figure 5.4: 7-DOF redundant robotic manipulator with eye-in-hand camera.
The object as used for visual control and exploration can be seen on the right.
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5.4.2 Task Definition

The defined task is divided in three steps: the first step positions the camera
and manipulator orthogonally and centred in front of the object. The second
and third step are defined as a translation offset in Cartesian space, respectively
to the front-left and front-right of the object. This translation can be freely cho-
sen; in simulation and experimental setting a sideways translation of 0.2 [m]
and forward translation of 0.1 [m] was chosen (Fig. 5.5).
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Figure 5.5: Task sequence for comparison of visual control algorithms and ex-
ploration motion. Left and right translations can be chosen freely.

The first pose is also used as safety; if a direct motion from pose 2 to pose 3
is defined, this may lead to unwanted or unstable behaviour. The camera may
come too close to the object, and thus the easiest solution is therefore to employ
an extra via-point. With the object taken as center, the camera covers roughly
60 degrees (i.e., ∼1 [rad]) with respect to the center of the image plane. Taking
into account the opening angle of the camera itself, this covers a large part of
the object for exploration.

5.4.3 Simulation Results

In simulation the different control methods are evaluated with the same explo-
ration task. Each iteration the visual control law is executed and it is assumed
that the robot follows this desired motion perfectly. This assumption (i.e., vi-
sual loop runs at a similar rate as the local control loop) is obviously not possi-
ble in a real world situation. Fig. 5.6 compares the references for PBVS and the
proposed method. For position based visual servoing, the reference is a con-
stant offset. The proposed method employs the same reference with the extra
feature that a term is added that takes the image error into account. This can be
seen in the figure as a continuously changing reference, with an overshoot at
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the start of every new pose, to obtain the best centred view. This feedforward
action dies out when the image error goes to zero.

Fig. 5.7 shows a comparison between different control solutions. Our
method (FF PBVS), is compared to traditional PBVS and Kyrki’s method [85].
The comparison is evaluated with the yaw angle error of the camera, which ex-
ecutes the largest motion. It is shown that our proposed method has equal or
better performance (in terms of error) compared to all others. Although PBVS
gives a decent performance, there is no guarantee that the object remains in the
field-of-view.

5.4.4 Experimental Results

For an experimental comparison, the same task is executed. From first obser-
vations of the experimental results (Fig. 5.9, and Fig. 5.8) it can be clearly seen
that vision is only updated every few iterations. This leads to a step-wise pro-
file as reference, however, the real motion of the robot is smooth. A second
difference between simulations and experiments is that due to external distur-
bances (e.g., friction in joints, gravity), the feedforward reference term of our
method does not completely die out towards the reference term of PBVS.

Fig. 5.8 compares the reference poses for the yaw angle of the different
methods. PBVS (dashed-dot) has a constant reference, and Kyrki’s method
(dashed) has a reference only based on the image error. The proposed method
(solid) shows a bigger yaw angle reference, due to the feedforward term, which
dies out when the image error goes to zero. A rough analysis also reveals that
when the PBVS reference and the reference of Kyrki’s method would be com-
bined, the reference of the proposed method would be obtained. This corre-
sponds with the basic concept of the proposed method.

Fig. 5.9 compares the proposed method (FF PBVS, solid) with Kyrki’s
method (dashed) for the yaw angle. The proposed method has a clear greater
range of motion for exploration around an object. Since in Kyrki’s method
only an image error defines the range of motion, external disturbances (fric-
tion in joints, noisy measurements) have a great impact. Due to the fact that
the proposed method uses a feedforward term combined with a position based
reference, the effect of these disturbances is overcome. Moreover, the measured
motion (red lines) reveals that the executed motion is smooth, despite the step-
wise input due to the slow update rate of the vision sensor.

Fig. 5.10 shows the error in image space (u- or x-axis) for moving from
pose 1 to pose 2 and back. The response of the proposed method (solid) com-
pared to Kyrki’s method (dashed-dot) can be considered comparable or better.
PBVS however, has a clear worse performance as it does not execute the same
error decrease. Moreover, with PBVS it may occur that the object leaves the
field-of-view. The large error of Kyrki’s method can be explained from the fact
that rotational control only relies on an image error. This is not sufficient to
compensate for large disturbances (e.g., friction, image noise).

These results correspond with the traditional vision-based control meth-
ods. IBVS designs a straight line in image space and does not consider Carte-
sian space. Kyrki’s method proves this, as the reference and the motion itself
in Cartesian space for the yaw angle (Fig. 5.9 and Fig. 5.8) are minimal com-
pared to PBVS and FF PBVS. On the other hand, PBVS designs a straight line in
Cartesian space and does not consider image space. This is shown in Fig. 5.10
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Figure 5.6: Reference pose comparison between the proposed method (FF
PBVS) and PBVS in simulation. It is shown that PBVS executes a constant ref-
erence. The reference pose of our method changes continuously and has an
overshoot due to the feedforward term which dies out when the image error
goes to zero.
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Figure 5.7: Performance comparison (in terms of error) between the proposed
method (FF PBVS), PBVS and Kyrki’s method [85] in simulation. The overall
performance of the proposed method (FF PBVS) can be considered equal or
better than the others.
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Figure 5.8: Experimental comparison of reference trajectories. PBVS executes
a constant reference. Kyrki’s method designs a trajectory only based on im-
age error data, which causes disturbances (e.g., friction, noise) to have a great
impact (i.e., small range of motion). The proposed method (FF PBVS) designs
motion with PBVS and a feedforward term obtained from image-based mea-
surements, and as such, achieves a greater range of motion.
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Figure 5.9: Experimental comparison of yaw angle control between the pro-
posed method (FF PBVS) and Kyrki’s method. Due to the feedforward scheme,
the proposed method has a clear greater range for exploring an object. Despite
the step-wise input due to a low update rate of the vision sensor, the measured
motion is smooth.
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Figure 5.10: Image error response for motion from pose 1 to pose 2 and back.
The response of the proposed method (FF PBVS) compared to Kyrki’s method
can be considered comparable or better. PBVS however, does not consider im-
age error data and thus performs worse.

where PBVS does not achieve an exponential decrease nor reaches zero error
in a similar time span. Concluding, the proposed method takes advantage of
both PBVS and Kyrki’s method and shows smooth motion in Cartesian space
while maintaining the field-of-view constraint (see Fig. 5.11).

5.5 Summary

This chapter presented several visual control algorithms in more detail and
elaborates on their advantages and disadvantages. The analysis includes the
traditional approaches (i.e., image-based and position-based visual servoing)
as well as several hybrid methods. A general comparison concludes that for
position-based visual servoing motion is designed in Cartesian space, while
for image-based control motion is designed in image space. Hybrid methods
are designed to take advantage of both. For example, the method designed
by Kyrki et al. designs a shortest path in Cartesian space while guaranteeing
object visibility. Following, a novel approach is proposed that eliminates the
short-comings of the traditional as well as the hybrid approaches. In particular,
if object visibility would only be guaranteed by an image error, disturbances
typical for motion control systems (i.e., friction, gravity) could play a large role.
This then result in motion which has a fairly limited range as is shown in ex-
perimental setting. The proposed method overcomes these issues by combin-
ing position-based visual servoing with a rotational image-based feedforward.
This effectively ensures the field-of-view constraint and adds a greater range of
motion for e.g. exploration around an object. It is shown that by definition the
stability properties of the proposed method are similar to the stability proper-
ties of traditional position-based visual servoing. Simulations and experiments
are carried out which show that the proposed method results in equal or better
performance compared to existing methods.
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Figure 5.11: End of pose 2 (i.e., ∼iteration 46 in Fig. 5.10), of exploration motion
using different visual control laws. Upper figure shows PBVS, where the object
is not kept in the field of view. Middle figure shows Kyrki’s method, which due
to the use of only an image error for rotation, is highly disturbed by friction and
results in a small range of motion. Lower figure shows the proposed method,
which combines PBVS and an image feedforward error and achieves a greater
range of motion (than the other methods) while keeping the object in the field
of view.
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CHAPTER 6

Direct Trajectory Generation
for Vision-Based Control

Abstract. This chapter discusses the topic of direct trajectory generation for

vision-based robot control. The proposed method is based on a combina-

tion of traditional trajectory generation and vision-based control. As such,

direct trajectory generation can incorporate changes of constraints online

as obtained by visual measurements. The method is explained and anal-

ysed in detail, its properties are discussed accordingly and experimental

results are presented for a single degree of freedom system.

6.1 Introduction

Trajectory generation is one of the most basic topics in robotic motion con-
trol. Much research has been carried out (for an introduction see e.g., [11])
and due to its proven history, commonly the focus of research in control sys-
tems lies more on the improvement and development of controllers rather than
focussing on the generation of motion itself. For the generation of such tra-
jectories many different elementary functions can be used. Examples include
trigonometric, exponential or polynomial functions. Common trajectories for
industrial robots are e.g., linear segments with parabolic blends (LSPB), cubic
splines for multi-point trajectories or B-splines for trajectories with higher de-
gree of continuity. The developments of these methods can be found in [11].
Due to the simplicity of incorporating constraints on a local level (i.e., on in-
dividual points and their time derivatives) as well as on a global level (i.e.,
constraints on the complete trajectory and its time derivatives), the method of
polynomial trajectory generation is used in this work.

A recent advancement, which has been gaining interest over the last
decade, is on the topic of online generation of motion trajectories (see Section
2.6 and e.g., [82], [106], [2], [142]). The general idea is that by focussing more
effort on the design of appropriate trajectories, controller design can become
effectively less demanding. This is motivated by the fact that if constraints of
a trajectory change online, offline planning is not suitable to handle this when
the trajectory is already being executed. Before a new motion trajectory can be
started, the current trajectory has to be finished. An abrupt change from an
executed trajectory to a new trajectory without taking into account the current
state will cause discontinuities in motion and will therefore lead to difficulties
in motion control (e.g., vibrations, wear, large error, etc.). If a trajectory can
be altered directly after a change is detected, this will result in a better perfor-
mance.
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In order to provide a solution to this motion and trajectory planning prob-
lem, this chapter proposes an extension to trajectory generation by incorporat-
ing a direct and online method for constrained motion planning.

6.1.1 Vision-Based versus Offline Motion Planning

Even-though the concept of both sensor-based planning and offline motion
planning is treated in detail in Chapter 5 and Section 3.5 respectively, a short
summary is given stating their advantages and disadvantages.

Offline motion planning designs a trajectory before any motion is executed.
This trajectory can not be changed at runtime, however, constraints on the tra-
jectory can be easily considered. A common procedure is to execute multiple
trajectories successively, where subsequent trajectories can account for changes
in constraints. This implies that while executing motion, the system is blind to
any changes. Vision-based motion planning considers the motion of a system
to be dependent on the sensor at hand. This means that motion is directly
modified based on the (visual) measurements of the sensor. The design of this
motion is usually highly simplified as incorporation of sudden events is fairly
complex or too time-consuming. Examples include only error minimization
(i.e., no kinematic constraints) for vision-based control or the planning of a
path instead of a trajectory for obstacle avoidance.

Moreover, a further difference between both traditional methods can be
identified in its execution time. Traditional offline motion planning defines
a single control structure known as trajectory tracking, which can be executed
at a fairly high rate (e.g., 1 [kHz]). On the other hand, vision-based control re-
quires more processing time to compute a motion command. This gives rise to
a local control loop to guarantee stability (i.e., ensuring a motion command is
reached) and a global loop that computes the motion command (see e.g., the
traditional visual servo approaches in Section 5.2). In particular, for vision-
based control it holds that

Tv > Tl , (6.1)

where Tv, the visual update time, commonly lies in the range of tens of millisec-
onds (e.g., 20 [Hz] or 50 [ms]), and Tl , the local control update time, commonly
does not exceed one millisecond. A path is then defined by a visually processed
position error and set to be minimized: ė = −λe, with λ a positive constant.
Combined with the interaction matrix Le, which relates the image feature ve-
locities to the velocities of the camera, a velocity controlled system is achieved
which executes an exponential decrease in error as motion: vc = −λL−1

e e (see
Fig. 6.1 and Section 5.1). This velocity input can lead to non-smooth or un-
desirable robot motion. In particular, the initial image error (at t = 0) acts as
a step-function (i.e., a discontinuity) for the velocity signal, which in turn im-
plies an infinite acceleration. Moreover, any constraints on motion (i.e., spatial,
kinematic or dynamic) are not directly included. Furthermore, missing, noisy
or delayed measurements have to be dealt with by e.g., a state observer (which
estimates the state of the next step based on current and past information),
otherwise instability of the system may occur.

Closer inspection suggests that if both approaches could be adapted into
one, the advantages of both could account for an improved motion design.
This approach fits perfectly in a motion control scheme where direct reactions
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Figure 6.1: Traditional visual servoing executes motion with an exponential
error decrease. This error is the velocity input to the system, and as such, serves
as a path, which leads to an inherently non-smooth and unconstrained motion
profile.

to sensor readings are eminent. More specifically, the approach of direct trajec-
tory generation could serve as solution to the problem of obstacle avoidance.
Where path planning would direct an avoidance procedure merely on path
planning level, the direct trajectory generation method considers the avoid-
ance procedure on trajectory planning level and, as such, can incorporate mo-
tion (i.e., kinematic) constraints online.

6.2 Direct Trajectory Generation

The general idea of direct trajectory generation is that each iteration (k) a new
motion profile for the next iteration (k + 1) is made, depending on the current
constraints qc, the current state Sk and the current trajectory synchronization
times ts. As initial conditions, certain choices have to be made regarding the
type of trajectory and the constraints. These are listed as follows:

• Trajectory type
Depending on the task at hand, it has to be specified how the overall
shape of the trajectory (and its time derivatives) should be designed. In
particular, the degree of continuity Cnp and whether the trajectory in-
cludes constraints on (via)-points and their time derivatives has to be
decided beforehand. These choices can be easily incorporated in a poly-
nomial trajectory by simply including or omitting constraint equations
and by expanding or reducing the polynomial function. The order of the
polynomial, as well as the complexity of trajectory generation is therefore
determined by these choices.
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• Trajectory constraints
The motion constraint vector qc of a trajectory specifies the position con-
straints and its time derivatives on (via-)points (see also Section 3.5.2) as:

qc =
[

qI qv q f vI αI v f α f

]
, (6.2)

for a 6th order polynomial trajectory (i.e., with 3 points). This includes po-
sition, velocity and acceleration constraints on the initial- and final-point
and only a position constraint on the via-point. For a 5th order polyno-
mial trajectory (i.e., point-to-point), the via-point constraint qv would be
omitted.

• Trajectory timing
The execution time te of each trajectory, depends on the limits of the task
and the system, and defines the synchronization time ts of the complete
motion. These limits (e.g., maximum velocity or acceleration) have to be
predefined.

The type of trajectory determines the complexity of trajectory generation
and is directly related to the number of (via-)points and the number of con-
straints. For instance, a trajectory can be designed with only start- and end-
point, or can be composed of several via-points. Alternatively, a motion profile
can consist out of several, smaller trajectories, each with different complexity.
Together with the local constraints on these points, the complexity of the com-
plete trajectory can easily grow relatively large. A trajectory with C2 continuity
and three points with equal number of constraints (i.e., a position, velocity and
acceleration constraint on all points) designs an 8th order trajectory. If the two
derivative constraints on the via-point would be omitted (as these are not nec-
essary to guarantee C2 parametric continuity), the order of the trajectory would
reduce to 6 (see (6.2)).

In general, a trajectory T is defined as:

T (qc, Sk, M, ts), (6.3)

where qc is the constraint vector as defined in (6.2), Sk = [qk, q̇k, . . . , q
(p)
k ]T ,

is the current state of the system (measured or from previous trajectory step)
with highest order of derivative p and

M =




qmax,1 q̇max,1 . . . q
(p)
max,1

...
...

...
...

qmax,N q̇max,N . . . q
(p)
max,N


 , (6.4)

is the matrix of maximum motion constraints on all N points.
ts = [ts,1, . . . , ts,N ]

T is the vector containing the timing constraints of all N
points. The output is the vector a containing the polynomial coefficients of
the trajectory: a = [a0, a1, . . . , ant ]

T . Depending on the control method (e.g.,
position, velocity, torque control), this vector is converted into a motion profile.
For instance, for position control the motion profile would be defined by

q(t) = a0 + a1t + a2t2 + · · ·+ ant t
nt , (6.5)
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where the degree of the polynomial nt depends on predefined choices (see also
(3.54)).

As a trajectory depends on the current state, as well as on events that are not
known before they occur, only the state of the next step of the trajectory Tk=1

has to be computed. More precisely, for every iteration, a is recalculated and
the execution time is updated. In this way, the trajectory is redesigned every
iteration to changing constraints and motion execution. This is elaborated in
more detail in the following subsections.

6.2.1 Event-Based versus Rate-Based

The proposed algorithm allows for event-based or rate-based trajectory gen-
eration (see Algorithm 6.2: line 1). For event-based generation, a trajectory
update is incorporated only when an event occurs. This is motivated by the
fact that events can occur at any moment, and should be detected and dealt
with as soon as possible. Examples are for instance the avoidance of an obsta-
cle or a safety manoeuvre. For rate-based trajectory generation, the trajectory
is updated continuously at a certain rate enabling even small disturbances to
be incorporated. A downside on the latter approach is that noise can affect the
trajectory generation quite significantly. Rate-based generation is motivated
by the fact that a sensor will not necessarily execute measurements at the same
rate as the local control loop. A logical implementation is to update the trajec-
tory at the same rate as the sensor.

As both methods are largely similar (the only difference lies in the trigger-
ing of the trajectory generator), a general algorithm for direct, online trajectory
generation is shown in pseudo-code in Algorithm 6.2. Depending on an up-
date due to an event-trigger or rate-trigger, a trajectory is generated as follows.
First, depending on predefined (or changed) constraints, the execution time of
the trajectory is determined (Algorithm 6.2: line 2). Following, all initial and fi-
nal constraints as well as the trajectory timing are updated (Algorithm 6.2: line
3). Finally, the polynomial coefficients a are computed, from which the state of
the next step Sk+1 is determined.

Determining the actual values for the final constraints depends on a sep-
arate mechanism. For example, when considering an avoidance motion with
visual obstacle detection, the proper values for the final constraints (e.g., a po-
sition that avoids the obstacle) are determined by visual processing.

6.2.2 Point-to-Point versus Multi-Point

When designing a trajectory with two points, the evolution of the final point
(i.e., the position of the point and its time derivatives) is a variable that can
be altered. A change of this variable can be applied at any moment in time.
If the trajectory is designed to contain multiple points, more design choices
(i.e., more variables which can be altered) become available. For instance, the
constraints on the via-point can be limited to only position or velocity as a con-
tinuous C2 trajectory is already guaranteed. Moreover, this choice is preferable
as with higher order trajectories, the behaviour becomes more oscillatory (i.e.,
Runge’s phenomenon). With the addition of via-points, the degree of the trajec-
tory will grow depending on the number of constraints. Unfortunately, when a
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Algorithm 6.2 Direct Trajectory Generation (DTG)

Input: Cnp , qc, qs, Sk initial conditions ⊳
Output: Sk+1 next step state ⊳

1: if qs > 0 || mod (i, 10) = 0 then event or rate-based ⊳

2: compute tev, teα see Algorithm 6.3 ⊳

3: qI = qk−1 update q, T, t f ⊳

q f = q f + qs

vI = vk−1

αI = αk−1

t f = ts + te − ∆tsum see also (6.8) ⊳

a = T†qc see also (3.61) ⊳
q(t) = a0 + a1t + a2t2 + · · ·+ ant t

nt see also (3.59) ⊳
Sk+1 = [qk+1, q̇k+1, q̈k+1]

T

4: end if

via-point is included, the order of the polynomial trajectory will increase (from
5th to 6th), and a minimum-jerk trajectory is no longer guaranteed.

Besides these local constraints on the points, the trajectory itself can also be
constrained. In particular this involves bounding the motion of the complete
trajectory (e.g., maximum velocity, acceleration), which can also be altered dur-
ing runtime. The method for guaranteeing such constraint is discussed in the
following subsection.

6.2.3 Constraint Optimization

When considering that a new trajectory can be generated at any arbitrary state
and time, the symmetry as found in traditional trajectories (i.e., the polynomial
trajectory can be mirrored around the middle point for odd order polynomials)
does not hold any more and a relation between execution time and constraints
is difficult to obtain. This difficulty originates from the order of the trajectory,
as finding roots for higher order polynomials becomes a cumbersome and com-
putational intensive task. A much simpler solution is to optimize the constraint
online. This implies that every iteration the constraints are evaluated, and if,
due to a redesign of the trajectory, these would be violated, extra time is added
to the trajectory. On the other hand, when a trajectory is altered such that a
constraint is not reached, time can be subtracted from the total execution time.

The location of a current constraint (maximum or minimum) is found by
computing the zero-crossings of the derivative (roots) of the considered poly-
nomial and its magnitude by evaluating the original polynomial at the found
roots. A simple steepest descent optimization routine [116] is sufficient to ac-
commodate for an eventual constraint mismatch and does not need to be exe-
cuted in one iteration. For a velocity and acceleration constraint this is respec-
tively expressed as

tev = dv(|vm| − vmax),

teα = dα(|αm| − αmax), (6.6)

in which dv > 0 and dα > 0 defines the rate of convergence, vmax and αmax the
predefined constraints and vm and αm the computed constraint (maximum or
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minimum) of the current trajectory.
As the number of iterations is fairly limited, the computation can be spread

out over several iterations. Algorithm 6.3 presents more details of the op-
timization procedure in pseudo-code for point-to-point motion. For multi-
point trajectories the root solving problem becomes higher order, however, the
method of solution remains the same.

Algorithm 6.3 Constraint Optimization for 5th order polynomial

Input: a, M trajectory and constraints ⊳
Output: tev || teα extra time to satisfy constraint ⊳

1: Tvc = 2a3 + 6a4t + 12a5t2 + 20a6t3 velocity constraint ⊳
2: Tαc = 6a4 + 24a5t + 60a6t2 acceleration constraint ⊳
3: if Tvc then
4: Tvc = 0 find roots and sort descending in r ⊳
5: tm = arg max{Tvc = 0} time of maximum ⊳

6: vm = a2 + 2a3tm + 3a4t2
m + 4a5t3

m + 5a6t4
m

7: if vm > vmax then
8: tev = dv(|vm| − vmax) steepest descent ⊳
9: end if

10: end if
11: if Tαc then
12: Tαc = 0 find roots and sort descending in r ⊳
13: tm = arg max{Tαc = 0} time of maximum ⊳

14: αm = 2a3 + 6a4tm + 12a5t2
m + 20a6t3

m
15: if αm > αmax then
16: teα = dα(|αm| − αmax) steepest descent ⊳
17: end if
18: end if

The extra time needed to avoid violating a constraint is added to (or sub-
tracted from) the originally designed trajectory time. The fact that every iter-
ation a new trajectory is generated implies that the trajectory time is continu-
ously decreasing (accept when tev or teα is added) and is equal to zero at the
end of the trajectory. More specifically, at t = 0 and t = t f it holds that

t(0) = t f , and t(t f ) = 0. (6.7)

When computing the trajectory online, the initial and final time are defined as

tI = 0, and t f = ts + te − ∆tsum, (6.8)

where ts is obtained from (6.9) and te is obtained from (6.6). ∆tsum is the as-
cending trajectory time and can be approximated as ∆tsum = Tlnit, in which Tl

is the local loop time with iteration count nit.
In general if a motion duration is not given, the optimal motion duration

for a minimum jerk trajectory is infinite. This can be easily verified by noticing
that the jerk cost approaches zero as the duration of a minimum-jerk trajec-
tory approaches infinity. Adding a secondary term (i.e., time) is therefore the
most straight-forward way to avoid such prediction [62]. By guaranteeing that
a kinematic constraint is always reached (with constraint optimization), a min-
imum jerk and time-optimal trajectory is achieved.
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It has to be noted that for the evaluation of the roots of a polynomial, the
complexity depends on the order of the polynomial. As the order of the poly-
nomial increases, it becomes more complex to determine these roots. A closed-
form solution for higher order polynomials becomes easily infeasible (i.e., too
many terms) for implementation (e.g., for quartic polynomials) or even do not
exist (i.e., for quintic polynomials and higher, as stated by the Abel-Ruffini
theorem1). Solutions, however, can be approximated by numerical methods
for root-finding (e.g., the method of Newton-Raphson) or numerical methods
which locate local minima (or maxima), where prior knowledge of the shape
of the polynomial can be taken into account (e.g., optimization methods). A
drawback, however, is the fact that such methods can take considerable com-
putation time.

6.2.4 Trajectory Synchronization

When considering a multiple degree of freedom (MDOF) trajectory where mo-
tion between DOFs is uncoupled, it is unlikely that all motions will be finalized
at the same time instant t f . In the case of direct trajectory generation where re-
planning requires altering the execution time, this synchronization needs to
be evaluated at runtime. This involves determining which DOF has the low-
est maximum constraint (i.e., velocity, acceleration, etc.) and adapting all tra-
jectories to its execution time. For a point-to-point 5th order trajectory this is
evaluated as

ts,l =





15

8

h

vmax
,

√
10
√

3

3

h

αmax



 , (6.9)

where ts,l , l ∈ {v, α} is the execution time, h = q f − qI and vmax and αmax are
the maximum velocity and acceleration respectively.

When considering a multi-point trajectory, the shape of the trajectory de-
termines the relation between execution time and constraints. For a 3-point
trajectory with only a position constraint on the via-point (i.e., a 6th order tra-
jectory), equation (6.9) can be used. For a 3-point trajectory with equal con-
straints on all points (i.e., an 8th order trajectory) the relation is found, similar
to the developments in Section 3.5.2, as

ts,l =

{
v8

h

vmax
, α8

h√
αmax

}
, (6.10)

where v8 = 1.9444 and α8 = 2.6925 (expressed numerically as the solution is
determined experimentally). These numerical results are obtained by filling in
arbitrary values for v8 or α8 (e.g., v8 = 1 or α8 = 1), running a simulation,
determining the maximum velocity and acceleration, and computing the real
numeric value:

v8 = ts,l
max |q̇(t)|

h
, and α8 = ts,l

√
max |q̈(t)|

h
. (6.11)

1The Abel-Ruffini theorem states that there is no general algebraic solution to polynomial equa-
tions of degree five or higher. It does, however, not assert that higher-degree polynomial equations
are unsolvable.
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When during runtime a trajectory is altered and the final time t f is changed
due to an addition or subtraction of te, this is passed on to all other trajectories.
Violations due to this addition is again dealt with by the constraint optimiza-
tion for all other DOFs.

6.3 Experimental Results

In order to show that the method can generate from an arbitrary state the de-
sired motion profiles as explained in Section 6.2, first results are shown for a
single DOF. Experimental results carried out with a 7-DOF redundant, anthro-
pomorphic robotic manipulator, where motion is designed in Cartesian space,
can be found in Chapter 8.

6.3.1 Experimental Setup

For experimental results, the first joint q1 of the 7-DOF robotic manipulator
AMOR2 is used (see Fig. 6.2). For safety, this base joint is limited to a maximum
angular velocity and acceleration of ν1,max = 0.5 [rad/s] and α1,max = 1 [rad/s2]
respectively.The local joint controller (i.e., PD-control with an update rate of
1 [kHz]) is implemented in C/C++, using the Eigen library for vector and ma-
trix manipulation. All processing is executed on a standard notebook where
communication with the manipulator is done via a CAN-USB device, with
different threads managing the data exchange with the CAN device (one for
reading and one for writing).

Figure 6.2: DTG is experimentally verified with a single degree of freedom, i.e.,
the base joint q1 of the 7-DOF redundant manipulator AMOR.

2http://www.amorrobot.com/
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6.3.2 Experimental Results for a Single Degree of Freedom

As task a single DOF trajectory is designed with C2 continuity from initial point
qI = 0 [rad] to final point q f = 0.5 [rad]. This implies a 5th order (quintic)
trajectory where the timing is determined by a maximum constraint (i.e., max-
imum velocity or acceleration). The constraints on the initial and final point
are designed as q̇I = q̈I = q̇ f = q̈ f = 0. At time t = 1.2 [s] the final point

q f = 0.5 [rad] is changed to q f = 0.8 [rad]. This shows that at any time and
in any state motion can smoothly be directed to new constraints. Direct trajec-
tory generation is shown in Fig. 6.3 and Fig. 6.4, for constraint optimization of
velocity and acceleration respectively. For the velocity case it can be seen that
the maximum velocity does not exceed vmax = 0.5 [rad/s]. For the acceleration
case the bound of |αmax| = 1 [rad/s2] is not exceeded. Closer inspection of
the final time t f shows that directly after the change of the final point the fi-
nal time is increased (i.e., incrementally optimized) to comply with predefined
bounds. As final note it should be mentioned that the acceleration profile is C0

continuous, the velocity profile is C1 continuous and the position profile is C2

continuous.

6.3.3 Constraint Optimization

As explained in Section 3.5.2 and Section 6.2.3 the relationship between the ex-
ecution time of a trajectory and the imposed constraint is difficult to obtain for
trajectories that can be altered at any time instant. Instead, an optimization rou-
tine is developed that incrementally extends (or shortens) the final time when
at any time instant a constraint would be violated. In Fig. 6.5 this can be seen
as at t = 1.2 [s] a new final condition is imposed for which the predefined con-
straints would be violated if the execution time of the trajectory would not be
altered. Fig. 6.6 shows how the constraint optimization can be solved in either
one iteration (dashed black line) or spread out over several iterations (solid
black line). The resulting velocity trajectory is the same for both methods. The
only difference lies in the execution time per iteration. As the solution for find-
ing the roots of a 3rd order polynomial is relatively simple (i.e., 3rd order due
to a 5th order polynomial position trajectory with global velocity constraint;
see Algorithm 6.3), this optimization routine can also be implemented in one
iteration online (i.e., the computation time is negligible). In the case of a 6th

order polynomial, the order of the polynomial for which the roots have to be
determined is maximum 4, for a global velocity constraint. As a closed-form
solution for this is too complex for real-time implementation (i.e., too many
terms), numerical methods have to be employed. Consequently, the computa-
tion time is of such magnitude that a solution can no longer be determined in
a similar time-span. A solution can be found within one iteration (i.e., within
1 [ms]), however, as a typical optimization routine requires dozens of steps to
achieve convergence, the solution for constraint optimization has to be spread
out over multiple iterations. In this experimental case and when tuned prop-
erly, the number of iterations necessary for convergence does not exceed 40
(see Fig. 6.6).
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Figure 6.3: Direct trajectory generation with online end-point change. In order
to comply with desired constraints (|vmax| = 0.5 [rad/s]), the final time of the
trajectory t f is iteratively extended directly after t = 1.2 [s] (black line). Also

note that the acceleration profile is C0 continuous, the velocity profile is C1

continuous and the position profile is C2 continuous.
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Figure 6.4: Direct trajectory generation with online end-point change. In order
to comply with desired constraints (|αmax| = 1 [rad/s2]), the final time of the
trajectory t f is iteratively extended directly after t = 1.2 [s] (black line). Also

note that the acceleration profile is C0 continuous, the velocity profile is C1

continuous and the position profile is C2 continuous.
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Figure 6.5: Direct trajectory generation with online change of the final point.
In this example the final time t f is not altered, resulting in the violation of

the predefined velocity and acceleration constraints (|vmax| = 0.5 [rad/s] and
|αmax| = 1 [rad/s2] respectively).
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Figure 6.6: Magnification of direct trajectory generation with constraint opti-
mization for velocity. The timing of constraint optimization is shown as exe-
cuted in one iteration (dashed black) and as executed with one optimization
step per iteration (solid black). Both methods result in a similar velocity trajec-
tory.
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6.4 Summary

This chapter proposed a method for the direct generation of trajectories for
vision-based control. As introduction the properties of vision-based motion
planning and traditional trajectory planning are addressed with respect to con-
straints and update rates. Vision-based planning is known to execute motion
on a path planning level where changes of constraints are incorporated at a
fairly slow rate. For traditional trajectory planning the opposite properties
hold, i.e., constraints can be easily incorporated (however, not online) and con-
trol rates are fairly high compared to vision-based planning. This conflict of
properties is the motivation for the developed approach. The proposed direct
trajectory generation method is presented from a general motion point-of-view
where the different design choices are explained in more detail. In particular,
motion is predefined based on the type of trajectory (i.e., order), which con-
straints apply (i.e., spatial and kinematic) and how the trajectory timing should
be incorporated (i.e., based on constraints or fixed). Following, several design
possibilities for trajectory generation (i.e., event-based versus rate-based and
point-to-point versus multi-point) are clarified and detailed in pseudo-code.
Event-based versus rate-based trajectory generation entails that the trajectory
should be either updated based on an event (e.g., due to a visual measure-
ment) or updated at a fixed rate (e.g., at the rate of the vision sensor). Fur-
thermore, similar to traditional trajectory generation, motion can be designed
with 2 points (i.e., point-to-point) or with multiple points. Additionally, an on-
line optimization procedure is proposed which guarantees that a constraint is
ensured whenever a trajectory is redesigned. This is achieved by monitoring
the predefined constraints online and altering the execution time of the trajec-
tory (i.e., either adding or subtracting time), whenever a constraint would be
violated. The alteration of this execution time can be effected in one iteration
or in multiple iterations depending on the available computational resources.
Finally, the proposed method is validated in experimental setting for a single
degree of freedom. It is shown that the proposed method can deal with changes
of constraints online at a trajectory planning level and at a traditional motion
planning rate.
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CHAPTER 7

Product Pattern-Based Visual
Servoing

Abstract. This chapter presents the application and implementation details

of product pattern-based visual servoing. The method is denoted as such

due to the use of the repetitive pattern of the product for visual control.

Methods as proposed in previous chapters are adapted to fit the purpose of

direct visual control of a planar motion stage. In particular, algorithms for

the detection of the product pattern and the generation of the image-based

trajectory as well as the control structure are explained in detail. Following,

experimental result show the effectiveness of the approach.

7.1 Introduction and Motivation

The continuous consumer demand for better and faster electronics (e.g., dis-
plays for smart-phones, televisions and cameras) has led to the development
of displays with increasingly higher resolution and increasingly smaller pixel
size. The technology for manufacturing these displays has to be improved or
reinvented as well. In particular, current state-of-the art display technology
offers products which have a flexible or non-rigid nature (see Fig. 1.1). The
fabrication of these devices then becomes a clear challenge as these flexibilities
cause high inaccuracies in the manufacturing process.

As explained in the introduction of this thesis in Section 1.2.1, the perfor-
mance of state-of-the-art positioning systems still depends on the rigid design
of a measurement and fixation system. With the manufacturing of displays
this solution can be problematic. For example, Organic Light Emitting Diode
(OLED) displays need a printing task on every pixel, however, when the loca-
tions for printing are inaccurate or unknown, the display will not be manufac-
tured correctly. These inaccuracies occur when the display is flexible, causing
a mismatch between measurements of the display location and the actual pixel
location. Direct visual measurements can circumvent this problem and can de-
termine accurately where a printing task should be executed. However, when
vision becomes part of a control system, a number of problems may arise. Fore-
most, the fact that visual processing can take considerably more time to execute
than a local control loop, demands the use of a double control loop structure
(see Fig. 2.1). The local controller is executed at a fast rate (e.g., 1 [kHz]) to con-
trol the motion of the system, while a slow (e.g., 25 [Hz]) visual loop designs
the motion of the system. This control structure is necessary to ensure stability
and at the same time allow vision to be part of the control loop.

The drawbacks associated to this control structure directly affect the per-
formance of the system. In particular, the delay induced by the vision system
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deteriorates the overall performance. This not only includes the update rate of
the image sensor, but also the transport of the image to the processing board
and the processing itself. Furthermore, as visual servoing is a sensor-based
control methodology, typical design of motion is executed on a path-planning
level, where constraints are not directly taken into account.

In order to avoid the delay as induced by visual processing on standard
processing platforms, this chapter presents a visual control system that directly
takes visual measurements into the control loop. This is achieved with a high-
speed vision system where the image sensor is directly connected to an FPGA
for visual processing and control feedback. This means that a double control
loop structure is not present and a traditional approach towards visual motion
control is attainable (i.e., trajectory tracking).

As such, this chapter presents the application and implementation details
of the developed method; product pattern-based visual servoing. The benefits
of using direct high-speed visual feedback are discussed, which, for our mi-
crometer positioning system, can be exemplified by a trade-off between frame
rate and image size to obtain useful information.

The developed methodologies include visual processing to detect individ-
ual features and the subsequent design of motion. The direct trajectory gener-
ation method as proposed in Chapter 6 is applied for smooth and constrained
motion which can be adapted online. Finally, experimental results are pre-
sented to validate the developed method.

7.1.1 High-Speed Visual Control Trade-off

As mentioned in Chapter 5 and Chapter 6, a basic visual servoing control ar-
chitecture is divided into a slow visual reference loop (e.g., video rate) and a
fast local joint control loop (e.g., kHz rate). Due to the slow visual update rate,
the control of the end-effector is stable, but the delay between a disturbance
and a control action can be dozens of sample-times in joint control reference.
However, as stated in [64], the availability of more and more computing power
has enabled researchers to use vision for feedback at higher rates. If the camera
is thus sampled high enough (e.g., 1 [kHz]), this can reliably be used as single
feedback for motion control. This gives rise to some design choices that have
to be made:

Ogawa et al. [107] introduced a trade-off relationship between magnifica-
tion and trackability in microscopic object tracking which can be written as

n f M =
f ps

vr
, (7.1)

with M the magnification index (i.e. the ratio of the target length to the visual
field width), f ps the frame rate of the vision system, n f the trackability index
(defined as the number of frames for the target to cross the visual field) and
vr = v

l , a velocity measure with l the diameter (in [m]) of the target and v the
physical velocity (in [m/s]) of the target. For a sufficiently high n f M (Ogawa
et al. obtained n f M > 20), the system ensures a sufficient magnification and
trackability.

A similar classification of performance is stated by finding a trade-off be-
tween frame rate and image size. In this, the velocity parameter is disregarded
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and instead the focus lies more on the measurement accuracy that can be ob-
tained. The relation between the frame rate ( f ps) and the cell size of the image
sensor for image processing (number of pixels c) is defined as

1

f ps
∝ c, (7.2)

where c is measured in pixels (or [µm]) and assumed as square sized. Of course
it is highly application dependent what image size (in pixels) is too excessive
for real-time image processing. Fig. 7.1 shows a comparison of several high-
speed vision systems, as well as the theoretical communication limits of several
standard industrial communication protocols for machine vision cameras.
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Figure 7.1: Comparison of high-speed vision systems. Solid lines depict the
theoretical communication transfer bandwidth limit. The compared references
can be found in Komuro et al. [80], Ginhoux et al. [50], Nakabo et al. [105], de
Best et al. [34] and Graetzel et al. [51].

Clearly, the trade-off between image size and frame rate determines the
properties of the visual control system, as is shown by all references. For ex-
ample, the largest image size for visual feedback is 320 × 240 [px] as is shown
by Komuro et al. [80], where a frame rate of 1 [kHz] is achieved. A predeces-
sor of this system was developed by Nakabo et al. [105], with an image size
of 128 × 128 [px] and similar frame rate. The other extreme is developed by
Graetzel et al. [51], where a frame rate of 6 [kHz] is achieved, however, with
an image size of 60 × 60 [px]. In fact, visual control is not executed in this,
as a static camera observes a fixed target (i.e., real-time wing beat analysis of
drosophila). The method of Ginhoux et al. [50] shows a model predictive con-
trol scheme combined with visual servoing to track a beating heart in robotic
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surgery, which is achieved with a frame rate of 500 [Hz] and an image size of
256× 256 [px]. From this comparison it might be obvious that a high frame rate
is chosen at the cost of a high resolution, which implies a lower accuracy as less
pixels are available for analysis. This trade-off is therefore the limiting factor in
vision-based control systems. The two remaining methods, i.e., from de Best et
al. [34] and our method, are discussed and presented in the following section.

7.1.2 Repetitive Product Pattern

The advantage of using the product directly for positioning can be explained
best by a comparison. In traditional motion control, the motor encoder deter-
mines in part the overall system accuracy. This is true for systems in which the
product is fixed with respect to the encoder and if the product itself can not
deform. If the location of the production head is relatively far from the mo-
tor encoder, vibrations can play a role in this large measurement loop, and the
positioning accuracy can decrease. Similarly, if measurements are obtained to
control the position of a table, the transformation between production head
and control reference (e.g., kinematic or dynamic model) has to be known
with high accuracy. This knowledge is usually difficult to obtain and can even
change over time. Furthermore, if measurements are done to control the posi-
tion of a table, the fixation of the product on the table has to be rigid and iden-
tical for every new product, which implies a costly motion and fixation system.
A direct, visual measurement system will effectively relate the position of the
product with respect to the production head since these have the same coordi-
nate frame. Moreover, when the product has a repetitive pattern, this can act
repetitively as (visual) reference encoder and, if sampled fast enough, separate
motor encoders become redundant. In that sense, it would be highly beneficial
if the image (i.e., the product pattern) that acts as encoder is relatively simple
and needs few pixels for accurate measurements. Basic operations and sim-
ple geometry on low resolution images would then result in sub-pixel accurate
measurements and a high frame rate and thus fast feedback.

Examples of repetitive patterns are for instance organic LED displays
(OLED, Fig. 7.2.a and Fig. 1.1) or semiconductors on a wafer substrate (Fig.
7.2.b). In both cases a positioning task has to align the production head with
respect to a repetitive pattern feature and perform a task. In the case of OLED
manufacturing, this additional task consists of inkjet printing. In the case of
semiconductor manufacturing, a pick-and-place task has to be carried out. De-
spite the difference in manufacturing, a similar approach towards using the
product as encoder can be taken.

These two industrial production processes are the topic of interest in the re-
search project ’Fast Focus on Structures’ (FFOS)1. This project is carried out by
a joint consortium of industrial and academic partners and focussed on vision-
based motion control regarding a repetitive pattern. For this, both industrial
cases were considered and contributions were made to develop a flexible, low-
cost, miniaturized measurement system for accurate positioning with respect
to a product.

In particular, for the case of semiconductor manufacturing, de Best et al.
[35] presents a visual control system with a frame rate of 1 [kHz] and an image

1supported by Agentschap NL - IOP Precision Technology - Fast Focus On Structures (FFOS).

100



7.1. INTRODUCTION AND MOTIVATION

100 mu

(a) OLED substrate (b) Wafer substrate

Figure 7.2: Repetitive product patterns. High resolution image of OLED sub-
strate (a). High Resolution image of transistors on a wafer (b).

size of 90× 90 [px]. In [34] results are shown where a 2D stop-and-go position-
ing task is executed with a positioning accuracy of ±10 [µm] (3σ measurement
variation: 0.3 [µm]) and a delay of 2.5 [ms]. A repetitive pattern on a wafer con-
sisting of semiconductor products (see Fig. 7.2.b) is used for direct feedback.
Moreover, in [35] the theory of iterative learning control (ILC) is used to han-
dle scale varying set-points. This is particularly useful for a repetitive pattern
which does not have a perfectly identical pitch between products (e.g., due to
the flexibility of the wafer). Experimental results with an industrial XY-wafer
stage show that a positioning error can be reduced to less than 5 [µm] after
convergence of the ILC algorithm.

As the development of a (miniaturized) visual control system involves the
mapping of image processing algorithms on dedicated hardware, the research
project ’Embedded Vision Architecture’ (EVA)2 has adopted the FFOS case (i.e.,
industrial inkjet printing in particular) as practical application. As such, re-
search has been carried out to implement the complete vision pipeline on a
FPGA (Field-Programmable Gate Array) processor [157, 158, 159] and a SIMD
(Single Instruction Multiple Data) processor [59].

7.1.3 Inkjet Printing of Near-Repetitive Patterns

Following, the case of industrial inkjet printing is motivated by the current
state-of-the-art and solutions for improvement and their developments are pro-
posed.

The manufacturing of Organic Light Emitting Diode (OLED) displays re-
quires an inkjet printing task on each individual OLED display pixel (or cell).
As such, each pixel (or cell) has to be aligned with the printing nozzle (print-
head) and a printing action shoots a droplet of polymer into each cell (see Fig.
7.3 and [89]). For cost reasons, the manufacturing of such displays has to be
done as fast as possible, implying that also the printing should be carried out
as fast as possible. The obvious solution of printing in a stop-and-go manner,

2supported by the Dutch Ministry of Economic Affairs - Embedded Vision Architecture (EVA).
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therefore, does not suffice. Instead, a printing task has to be executed on-the
fly, where the print-head moves with a fixed velocity over each OLED cell.
If a display is a rigid structure (i.e., the pitch between OLED cells is equal)
and the location of the display is known at all times, the printing task could
be executed with a constant velocity and a constant drop-on-demand (DOD)
print-frequency [163]. Existing research adopting this technique can be found
in e.g., [36], [118], an overview of inkjet-based micro-manufacturing is given
in [68]. However, due to the flexible nature of the display and the absence of
a proper fixation system, a designed trajectory is a necessity. An additional
reason for designing motion with a trajectory instead of a constant reference is
the quality of the printing process. As the printing quality deteriorates with a
higher velocity of the print-head with respect to the motion stage [153], a low
velocity, when a printing action is executed, is desirable. In order to obtain a
higher average velocity, a constant reference velocity should be avoided, and a
designed trajectory should be employed.

Fig. 7.2(a) shows a microscopic view of an OLED display. The size of one
OLED cell is 220 × 80 [µm], with a pitch in horizontal and vertical direction of
220 [µm] and 80 [µm] respectively. For the printing task, the print-head shoots
a polymer droplet, which has a diameter of 50 [µm], at the centre of each OLED
cell (see Fig. 7.3 and [118]). In order to execute an accurate printing task, the
delay of the printing task itself needs to be taken into account. The travel time
of a droplet depends on the velocity of the droplet νprint and the distance it has
to travel dprint, and can be determined as

ttravel =
dprint

νprint
. (7.3)

Assuming a droplet print velocity of νprint = 5 [m/s] and a printing height of
dprint = 1 [mm], the travel time of a droplet equals ttravel = 0.2 [ms]. Consider
that a printing action is triggered when the table is moving with a velocity of
νtable = 4 [px/ f rame] = 28.8 [mm/s] (for a 4.5 [µm] sized pixel and a frame
rate of 1600 fps). This implies that from the droplet leaving the nozzle to the
droplet hitting the OLED cell, a distance of 5.76 [µm] or 1.28 [px] has been
travelled by the motion stage. Similarly, the bounds on the velocity over the
centre of the OLED cell can then be determined. Assume that the position error
for the printing process is tolerable at ±10 [µm] from the centre of the OLED
cell. If the printing task is triggered exactly at the centre of the OLED cell, the
velocity which violates this error is then found as 6.9 [px/ f rame]. As such, the
tolerance for the velocity of the table at each OLED cell centre is thus specified
as: νtable = 4 ± 2.9 [px/ f rame] = 28.8 ± 20.9 [mm/s].

As there already exists an error of 5.76 [µm] if the printing task is triggered
exactly at the centre of the OLED cell with perfect velocity tracking, a better
solution is to predict when the print-head should be triggered. This can be
done by a linear predictor such as an α-β filter [70], which should take into
account the delay due to the travel time of the droplet (i.e., ttravel = 0.2 [ms]) as
well as the delay between the trigger of the print-head and the droplet leaving
the nozzle.

This analysis assumes that the print-head is located at the centre of the im-
age, which might not be the case. For the actual printing task the delay due to
this mismatch has to be taken into account as well.
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νprint = 5 [m/s]
ttravel = 0.2 [ms]

OLED cell

printing height:
dprint = 1 [mm]

droplet: ø = 50 [µm]

220 [µm] νtable = 4 [px/frame] = 28.8 [mm/s]

Figure 7.3: Close-up of inkjet printing process. The travel time of the droplet
causes a position error of 5.76 [µm]. In order for the printing task to stay within
the defined positioning tolerance of ±10 [µm], the velocity of the table at each
OLED cell centre should ensure νtable = 4 ± 2.9 [px/ f rame].

With an average velocity of ν̄table = 5 [px/ f rame] = 36 [mm/s] and an
assumed display size of 640 × 480 [px], one row of 480 OLED cells will be
covered in 2.93 seconds, which implies a print-frequency of ∼160 [Hz].

This brief analysis assumes very conservative assumptions, and does there-
fore not represent the state-of-the-art. For instance, print frequencies up to 10-
20 [kHz] are attainable, and a higher speed of the printing task are therefore
feasible.

7.2 Product Pattern-Based Visual Control

The use of a repetitive pattern for control can be summed up in a few consecu-
tive steps. First, it has to be determined if distortions due to the lens have to be
taken into account. Subsequently, image processing algorithms are employed
which compute the location of the OLED cells in the field of view. These mea-
surements are then used as input for the design of the motion trajectory. These
developments are presented in more detail in forthcoming sections.

7.2.1 Planar Microscopic Camera calibration

When regarding the complete image solely as visual information for control
(e.g., as encoder), high demands must be set to obtain correct visual measure-
ments. From visual systems it is known that lens distortion causes image in-
formation to be misplaced on the image sensor. A first step is therefore to
employ a camera calibration algorithm to determine if the distortion due to
the lens causes a disturbance. As the object can only be observed when the
product plane is parallel to the image plane and the field of view is limited
(i.e., ∼6.2 mm2 for 640 × 480 [px]), macroscopic camera calibration techniques
[123] and printed calibration patterns can not be used. A method is proposed
that simplifies traditional macro calibration by the assumption that the depth
parameter z is fixed.
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Due to the fact that the used microscopic optical system has a small depth of
focus, a fixed depth and only planar motions will be made, a few assumptions
can be made that simplify the parametric microscope model [164]. Tsai’s well-
known calibration algorithm [146] is therefore modified for the parallel case as
follows. The transformation between global coordinates: (xg, yg, zg) and object
coordinates (x, y, z) can be written as:




x
y
z


 = R




xg

yg

zg


+ t =




r1,1 r1,2 tx

r2,1 r2,2 ty

r3,1 r3,2 tz






xg

yg

1


 , (7.4)

with zg equal to zero for coplanar points. The entries of the rotation matrix and
translation vector are taken as defined in (4.8).

For microscopic lenses, only the first radial distortion parameter (κ1) needs
to be modelled, which relates the distorted image points p = [u, v] and the
undistorted (or corrected) image points pcor = [ucor, vcor] image points as:

ucor = u(1 + κ1r2),

vcor = v(1 + κ1r2), (7.5)

with r2 = u2 + v2. Furthermore, in (7.4), z can be written as:

z = r3,1xg + r3,2yg + tz. (7.6)

When now assuming the parallel relation between global coordinates and im-
age coordinates (i.e., implying r3,1 = r3,2 ≃ 0), z can be simplified to z = tz.

Finally combining all above equations, the following expression can written
for the microscopic calibration model:

u(1 + κ1r2) = Mo(r1,1xg + r1,2yg + tx),

v(1 + κ1r2) = Mo(r2,1xg + r2,2yg + ty), (7.7)

with Mo = f /tz the optical magnification factor and f the focal length.
The algorithm to solve for the calibration parameters is adopted from Tsai

[146] with the adapted definition for the microscope model. Tsai’s two-step
procedure first determines all extrinsic parameters through a closed-form solu-
tion and a radial alignment constraint (RAC) by setting up an overdetermined
system of linear equations:

[
vxg vyg v −uxg −uyg

]




t−1
y r1,1

t−1
y r1,2

t−1
y tx

t−1
y r2,1

t−1
y r2,2



= u, (7.8)

which can then be solved with p > 5 calibration grid points.
Step 2 consists of a nonlinear optimization routine to determine the intrinsic

parameters. (7.7) can be rewritten as

Mo(p + q)− κ1(u + v)r2 = u + v, (7.9)
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where

p = r1,1xg + r1,2yg + tx,

q = r2,1xg + r2,2yg + ty. (7.10)

With p > 2 calibration points, an overdetermined system of linear equations
can be set up and solved for κ1 and Mo:

[
p + q −(u + v)r2

] [ Mo

κ1

]
= u + v. (7.11)

These initial estimates for κ1 and Mo are then filled into (7.4) and optimized
with a nonlinear optimization scheme.

The extraction of calibration points from images is done with the image
processing algorithm presented in the following section.

7.2.2 Feature Localization

In order to use the product as reference, a fast image processing algorithm has
to extract individual reference points from an image. From a grayscale (8 bit)
image obtained from the camera, the first step is to segment the image into a
binary format. Many thresholding techniques have been presented over the
years, an extensive survey can be found in literature [130]. The main problem
in detecting the features is separating the foreground from the background.
Since two main intensity distributions can be distinguished, the solution is to
find the most optimum threshold value. A few clustering-based thresholding
techniques are evaluated with respect to performance, threshold method and
complexity (see Table 7.1).

The ’Isodata’ method [120] is an iterative procedure based on foreground
and background classification. The clustering converges when the difference
between iterative threshold values becomes sufficiently small. The method
is very similar to the K-means algorithm with the difference that the Isodata
method allows for different numbers of clusters, while K-means assumes the
number known a priori. Otsu’s method is an optimum global thresholding
technique in the sense that it maximizes the inter-class variance, and equiva-
lently, minimizes the intra-class variance [108]. The ’Minimizing error’ thresh-
olding technique by Kittler and Illingworth [79] assumes grayscale (i.e., 8 bit)
data and is designed to optimize the average pixel classification error rate di-
rectly, using either an exhaustive search or an iterative algorithm.

Table 7.1: Thresholding algorithm comparison

Isodata Min. error Otsu
Method k-means minimizing minimizing

clustering error intraclass
variance

Timing fast medium fast
Complexity high medium low
Applicable yes no yes
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From a thorough comparison, Otsu’s method seems most advantageous
for our application. Compared with the other two methods, it has the low-
est complexity and is easiest to implement. The ’Isodata’ method has similar
performance in timing, however, the amount of parameters and the number of
steps per iteration make it less preferable with respect to the real-time require-
ments. Furthermore, due to the large deviations in threshold value, compared
to aforementioned methods, and the fact that it is much slower in computation
time, the ’Minimizing error’ algorithm is also not applicable.

The studied thresholding algorithms all compute a global threshold value,
which is sufficient due to the small size of the image.

After the image is binarized, the next step is to detect and identify individ-
ual features while ignoring noise. By employing mathematical morphology
(i.e., boundary following), an image processing algorithm iteratively locates
each feature.The final step is then to compute the sub-pixel accurate centre lo-
cation inside each feature. The two vertical edges of each structure are known
from boundary following and used to determine a pixel accurate x-position for
each of the 4 points (see Fig. 7.4):

hx[1] = box.x + 0.2 ∗ box.width,

hx[2] = box.x + 0.8 ∗ box.width. (7.12)

This is then the start point to localize the maximum edge gradient position
in sub-pixel accuracy in vertical (y) direction. A local maximum is interpo-
lated using five neighbouring points and calculating their gradient norm. Sim-
ply said, this is fitting three points (i.e., representing the edge gradient) to a
quadratic equation and finding its maximum.

To determine which gradient approximation method is most beneficial, a
comparison is made between several derivative operators (see Table 7.2). The
overall performance of the four edge detectors is very similar, with exception of
Roberts’ operator. This is due to the simplicity of the kernel and the inhibition
of suppressing noise. Because the remaining operators have similar output, the
simplest (i.e., symmetric) of all three was chosen for gradient approximation on
OLED cell edges.

With L = {l(jp)|jp ∈ Z} an infinite line of pixels with a peak at coordinate
0 corresponding to the middle pixel l(0) and ∇ a general derivation operator
(symmetric) the gradient norm becomes:

a = |∇l(−1)|,
b = |∇l(0)|,
c = |∇l(1)|. (7.13)

Table 7.2: Derivative operator comparison

Prewitt Roberts Sobel Symmetric
Kernel size 3 × 3 2 × 1 3 × 3 3 × 1

Performance high low high medium
Noise medium low high medium

suppression
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The maximum of the parabola (i.e., the highest slope in intensity) passing
through (−1, a), (0, b) and (1, c) is now found by:

ym =
a − c

2(a − 2b + c)
. (7.14)

This maximum ym is calculated for hx[i] and its direct neighbouring
pixel columns, i.e., hx[i]− 1 and hx[i] + 1, and the average of these three values
is then passed as local y-maximum (see Fig. 7.5). From the 4 found sub-pixel
accurate points, a line is fit from the two pairs of opposite points on both verti-
cal and horizontal edges:

y1 = a1x1 + b1, a1 =
ym,rd − ym,lt

xm,rd − xm,lt
, b1 = ylt − xm,lta1, (7.15)

y2 = a2x2 + b2, a2 =
ym,ru − ym,ld

xm,ru − xm,ld
, b2 = yld − xm,lda2, (7.16)

where the subscripts l, r, d and u denote left, right, down and up respectively
for the location of the 4 points. The crossing of these lines then determines the
final centre coordinates pc = [pc,x, pc,y]T of the feature (Fig. 7.4):

pc,x =
b2 − b1

a1 − a2
, and pc,y = pc,xa2 + b2. (7.17)

The presented centre detection algorithm is designed for rectangular fea-
tures. When the feature is square shaped, a similar method can be used to de-
termine each centre location. For instance, the gradient approximation method
can be applied in both directions (i.e., on all edges) with one or two approxi-
mations per edge, depending on available computation time and required ac-
curacy. In Algorithm 7.4 all steps of the centre detection algorithm are summa-
rized.

Obviously, a weighted centre of gravity calculation would be an easier and
faster method to determine the location of a feature. However, this has the
disadvantage that, whenever there is a slight deviation in intensity inside the
feature, this affects the repeatability and outcome of the algorithm. In other
words, the algorithm is not robust against lighting changes when similar fea-
ture conditions apply. The presented method uses only a few pixels, reducing
the chance that a small lighting deviation affects the outcome of the complete
algorithm.
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hx[1] hx[2]

ym

Figure 7.4: Outline of OLED cell with sub-pixel accurate points to determine
centre point. hx[1] and hx[2] are determined from the vertical edges of the
OLED structure (bounding box). The right grid shows the intensity value
changes for the edge and the point where the slope has a maximum (ym).

ym

(a)

ym

(b)

Figure 7.5: (a) shows the intensity values for each vertical edge pixel-line
(hx[i] − 1, hx[i] and hx[i] + 1). The long horizontal line represents the mean
highest slope of all three vertical pixel-lines. (b) shows the derivative (1D sym-
metric) of (a) in vertical direction . The short horizontal lines represent the
maximum of each vertical grid line, the long line represents the mean of the
three short lines.

Algorithm 7.4 Repetitive Feature Localization

Input: I grayscale image ⊳

Output: pc feature centres ⊳
1: Segment image with Otsu’s method
2: for all features do
3: Follow boundary of feature
4: for all 4 edge points hx do
5: Calculate gradient ∇(l) of edge pixels
6: Calculate sub-pixel edge point ȳ(m)
7: end for
8: Use opposite points to form 2 lines
9: Crossing of lines determines feature centre pc

10: end for
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7.2.3 Direct Trajectory Generation

The inkjet printing task that the visual control system has to accomplish can
be stated formally as follows. In an ideal situation (constant pitch between
OLED cells and perfect fixation), a constant velocity signal with fixed drop
on demand print frequency would suffice. However, due to the design of the
display (i.e., flexible display) or due to disturbances on the structure (e.g., heat,
vibrations, fixation), this does not hold any more. Moreover, in order to obtain
a higher throughput (i.e., more displays manufactured per hour), a constant
velocity should be replaced by a velocity profile with fixed velocity on OLED
cell centres and a higher velocity in between OLED cell centres. This results in
a higher average velocity for the manufacturing of a display.

The motion of the print-head is designed such that at the centre of each
OLED cell the velocity and acceleration is equal to a predefined value:

tdrop = constant, or

tdrop = te,

q̇ f = νdrop, and

q̈ f = αdrop, (7.18)

in which, subscript f indicates final. te can be set as a constant time between
cell centres or taken as (6.9), which indicates that the timing is constrained by
either a maximum velocity or acceleration. This effectively enables the trajec-
tory generation to obtain a higher average velocity while ensuring constraints
on the centres of the OLED cells.

In order to not excessively excite the system, a C2 continuous point-to-point
trajectory is chosen, for which the constraint vector qc is obtained as

qc = [ qI , q f , q̇I , q̈I , q̇ f , q̈ f ]
T ,

= [ qk−1, q f , νk−1, αk−1, νdrop, αdrop]
T , (7.19)

in which image measurements are incorporated as q f = pc,x (see (7.17)) for
motion in x-direction.

The timing of each trajectory is thus fixed and a rate-based generation is
effected (i.e., based on the visual measurements). This in effect implies that a
trajectory is no longer designed with respect to a global kinematic constraint,
but is rather designed to ensure the temporal constraint, i.e., arrival at fixed
times with fixed local kinematic constraint:

tI = 0, and t f = tdrop − ∆tsum, (7.20)

in which tdrop is taken from (7.18) and ∆tsum = Tlnit is the ascending trajec-
tory time with Tl the local loop time with iteration count nit. The routine for
computing the trajectory online (see Algorithm 6.2) is proposed in Section 6.2.

As an OLED display typically has hundreds of OLED structures in
sequence, a continuous succession of trajectories has to be generated with
matching constraints at end- and start-point. More specifically, it has to hold
that the start-point of a new trajectory matches with the end-point of the previ-
ous trajectory. When generating a trajectory with C2 parametric continuity, this
should also hold for the velocity and acceleration at the end- and start-point.
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The direct trajectory generator (DTG) generates a velocity trajectory to con-
trol the table to move from one OLED cell to the next one. For motion in x-
direction, from initialization the left most OLED cell (of the three horizontal
cells in the field of view) is tracked and motion is generated to move it to the
print-head position pprint,x with predefined constraints. When this position is
crossed (i.e., before the next iteration), a new trajectory is designed. Similarly,
the print-head should be triggered by the event of an OLED cell centre crossing
pprint. However, as this crossing most likely occurs in between iterations, the
exact trigger time tprint is predicted by as:

tprint = tk+1 + ∆tcc − ttravel − trem, (7.21)

∆tcc =
pprint,x − p̂c,x,k+1

p̂c,x,k+2 − p̂c,x,k+1
T, (7.22)

where tk+1 + ∆tcc is the estimate of the time until a cell centre crossing, ttravel

is the delay due to the travel time of the droplet through the air (see Section
7.1.3 and (7.3)) and trem is the remaining delay (e.g., due to data communica-
tion, position difference print-head and image centre). The future position and
velocity are predicted with an α-β filter [70] as:





pc,x,k = p̂c,x,k−1 + Tl
ˆ̇pc,x,k−1,

ˆ̇pc,x,k = ˆ̇pc,x,k−1,

r̂c,x,k = pc,x,k − p̂c,x,k,

p̂c,x,k = p̂c,x,k + αr̂c,x,k,
ˆ̇pc,x,k = ˆ̇pc,x,k + β/Tl r̂c,x,k.

(7.23)

The future positions are then found as:

{
p̂c,x,k+1 = p̂c,x,k + Tl

ˆ̇pc,x,k,

p̂c,x,k+2 = p̂c,x,k + 2Tl
ˆ̇pc,x,k.

(7.24)

The algorithm to detect both the trigger for DTG as well as for the print-
head is described in Algorithm 7.5.

Algorithm 7.5 Event trigger of DTG and print-head

Input: pc = [pc,x, pc,y], pprint OLED cell centres and print-head position ⊳

Output: Trigger signal for DTG and print-head
1: Initialize: track left most cell
2: for each iteration do
3: if (pc,x < pprint,x) and (pc,x + ˆ̇p) > pprint,x then
4: If crossing pc,x = pprint,x will occur before next iteration ⊳

5: Trigger DTG Generate new trajectory ⊳

6: Trigger print-head determine tprint, see (7.21) ⊳
7: end if
8: end for
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7.2.4 Visual Control Law

The motion of the xy-table is velocity controlled due to the importance of a
fixed velocity at each OLED cell centre. This is necessary to guarantee a fast
cycle time when manufacturing a display. In order to take into account the
differences in pitch with the designed trajectory, a velocity PID controller (3.20)
as presented in Section 3.3.1 is employed (see also Fig 7.6). Additionally, a
feedforward compensation term for the mass and the friction of the table is
added as presented in Section 3.2. The friction is modelled with a Coulomb
and viscous friction term as

Fw(q̇d) = Fvq̇d + Fcsgn(q̇d), (7.25)

where Fv > 0 is the matrix containing viscous friction terms, Fc > 0 is the
matrix containing Coulomb friction terms and sgn(q̇d) denotes the vector con-
taining the signum operator as presented by (3.2). This classical model of fric-
tion (see e.g., [6] for a survey on friction models, [13] for an overview of friction
compensation in robotics, as well as Section 3.2) is sufficient to compensate for
the major friction disturbance as occurs in the prescribed task. This will be
shown in the experimental results in Section 7.3.4.

Including the mass feedforward term, the complete feedforward control
term can be described as

F f f = M̂tq̈d + Fw, (7.26)

where M̂t is the estimated mass matrix of the table and Fw is taken from (7.25).
The feedback obtained from vision are position measurements, which sub-

sequently are converted to velocity estimates. Such velocity estimate is deter-
mined as:

ˆ̇xk =
1

nd

nd

∑
i=1

(xk,i − xk−1,i) , (7.27)
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Figure 7.6: Control scheme for planar product pattern-based visual servoing.
The DTG block generates a trajectory online based on image measurements.
Trajectory tracking is achieved with a velocity PID controller, with an addi-
tional feedforward term to compensate for the mass and the friction of the mo-
tion stage.
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where nd is the number of detected OLED cells in the field of view. This esti-
mate is valid as the velocity is expressed in pixels per frame [px/ f rame]. Fi-
nally, the measurement noise is filtered out by using an α-β filter.

7.3 Experimental Results

The algorithms for visual and trajectory processing as presented in previous
sections are integrated into an experimental setup for evaluation. This setup is
explained, and results are shown for camera calibration and pattern detection.
Following, results are given for the methodology of direct trajectory generation
and control, as well as a comparison with a constant trajectory reference.

7.3.1 Experimental Setup

The experimental setup as developed for experiments can be seen in Fig. 7.7, a
schematic representation in Fig. 7.8. The system consists of 2 linear actuators
(Dunkermotoren ServoTube STA11), a stationary camera (SVS-Vistek-340) and
an FPGA (Xilinx Virtex-5 xc5vsx50t) for processing. Compared to gear-reduced
systems (e.g., ball-screw actuators), direct-drive systems are known to have re-
duced friction, no backlash and high stiffness. This setup was developed by
Jeroen de Best as part of the Fast Focus on Structures (FFOS) project and pre-
sented in [34]. The embedded processing system (camera, FPGA and process-
ing) was developed by Zhenyu Ye as part of the Embedded Vision Architecture
(EVA) project and will be presented in [156]. The camera sends monochrome
images with a frame rate of 1600 fps and image size of 160× 100 pixels directly
to the FPGA via a CameraLink interface. Combined with a 1.5x magnifying
lens (Opto-engineering MC1.50x) the images have a pixel size of 4.5 [µm]. A
coaxial lighting system is incorporated which has the advantage that the light
that enters the camera sensor is reflected mainly from axial illumination. This is
due to the use of a beamsplitter which directs illumination from a power LED
source downwards onto the OLED substrate which subsequently is reflected

Figure 7.7: Experimental setup of the visual control system for product pattern-
based visual servoing.
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Figure 7.8: Diagram of the visual control system for inkjet printing.

up into the camera. The camera and lighting are static, while the motion ta-
ble including the OLED display are actuated by the two linear motors. As one
pixel is represented by one byte, the effective network load for transferring the
images at 1.6 kHz is roughly 26 MB/s (see also Fig. 7.1). As the proposed
control method is a direct visual servoing approach, the control frequency is
similar to the camera frequency, i.e., 1600 Hz. It has to be mentioned that feed-
back is solely obtained from visual measurements, the local motor encoders
which are present in the linear motion system are not used.

With these parameters the trade-off relationship between magnification and

trackability as defined by Ogawa et al. in [107] is found as n f M = f ps
vr

≈ 12,

for a target velocity of v = 28.8 [mm/s] and a target length of l = 220 [µm].
Compared to the results of Ogawa et al., who obtained n f M > 20, this is a
fairly decent value.

7.3.2 Implementation Details

The complete visual processing pipeline, including control algorithm, is exe-
cuted on an embedded processing platform. Visual processing is accelerated
and optimized on a Field-Programmable Gate Array (FPGA) to utilize parallel
processing as much as possible. The image sensor is directly connected to the
processor such that processing starts directly when the first line of the image
is received. Fig. 7.9 and Table 7.3 show the timing breakdown of the complete
image pipeline. It shows that the update rate is dominated (i.e., limited) by the
transfer (readout) of image data to the processor.

The resource usage of the whole system is less than 30% of a mid-range
FPGA (Xilinx Virtex-5 xc5vsx50t). The remaining resources could be used to
even further accelerate the vision pipeline, however, as shown in the timing
analysis of Fig. 7.9 the start-to-end delay is dominated by the readout time.
Unfortunately, these cannot be accelerated by an improved FPGA implemen-
tation. Furthermore, utilizing an even faster frame rate should be supported by
the camera, which might not be the case, and a shorter exposure time brings
further difficulties regarding sufficient light for image exposure. The imple-
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mentation details of the vision pipeline on FPGA3 is not part of this work, but
can be found in [157], [158], [159] and [156].

Table 7.3: Timing of vision pipeline

Time
Camera frame rate 1.6 [kHz]
Camera update ∼600 [µs]
Exposure 50 [µs]
Readout 500 [µs]
Visual Processing 950 [µs]
Start-to-end delay 1000 [µs]

0 500 1000 1500

Exposure
Readout

Projection
Segmentation

Control

frame

0

1

t [µs]

Figure 7.9: Timing pipeline for the vision and control algorithm on FPGA. As
can be seen in the figure, processing starts directly when the first line of the
image is received. Foremost, the trade-off between image size and update rate
determines the delay between exposure and control action.

7.3.3 Calibration and Detection Results

The derived planar calibration procedure is tested with two different calibra-
tion patterns; an industrial high accuracy calibration grid and the OLED dis-
play itself which is also a repetitive pattern.

Calibration

To evaluate the necessity for camera calibration, the position error due to ra-
dial distortion for several values of κ1 is shown in Fig. 7.10. The exponential
growth when further away from the centre proves the necessity for position
correction when using even a highly accurate lens. For instance, if 1% distor-
tion at 200 pixels centre offset results in 2 pixels deviation, then a maximum of
0.1% distortion (a common distortion value for low-distortion lenses) will give
a 0.2 pixel mismatch at the same centre offset. When keeping in mind that each
pixel can be as large as 4.5 [µm], a measurement error of 0.9 [µm] (i.e., 20%) is
added to the measurement accuracy.

Camera calibration is performed with single images for two patterns (i.e.,
an OLED product pattern image and an industrial calibration pattern image).
Multiple calibration experiments were carried out with the patterns shifted

3These developments where carried out in close collaboration with Zhenyu Ye.
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slightly, however, since these are continuous grids, the patterns fill the com-
plete field of view (i.e., 640 × 480 [px]). Due to image processing and lighting
conditions, the measurements of the product pattern contain more noise (i.e.,
higher standard deviation and maximum error), which subsequently causes a
less uniform grid then the industrial pattern. This results in slightly different
calibration parameters as to be seen in Table 7.4. κ1 shows to be a very small
value, confirming a very precisely machined lens, as stated by the manufac-
turer. Standard error evaluation measures (mean, standard deviation, maxi-
mum error) also verify the lesser accuracy for the product pattern, due to the
higher complexity in measurements.

As the image for control only extends a maximum of 80 [px] from the cen-
tre, this results in a 0.03 % image error mismatch, which, with a pixel size of
4.5 [µm] is 0.15 [µm]. This value is much smaller then the noise observed from
measurements (i.e., 3σ = 2.55 [µm]) and implies that a calibration procedure is
not necessary.
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Figure 7.10: Mismatch of pixel locations for different radial distortion values.

Table 7.4: Calibration results
Pattern Industrial Product

κ1 [µm−2] -3.84e-10 -6.72e-10
magnification: M0 = Tz/ f 4.03 4.26
image error
mean 0.6 [µm] 1.3 [µm]
standard deviation 0.3 [µm] 0.7 [µm]

Feature Detection

Each 160× 100 [px] image (i.e., ∼0.3 [mm2]) contains 3× 5 OLED cells. Fig. 7.11
shows a close-up of the result of the image processing steps as explained in Sec-
tion 7.2. The measurement noise has a standard deviation of σ = 0.18 [px] =
0.85 [µm]. As such, 99.7% of the measurements lie within the deviation of
3σ = 0.56 [px] = 2.55 [µm], which is quite a substantial value considering
the required accuracy of 10 [µm].
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Figure 7.11: Output of the centre detection algorithm. Left figure shows the
output after thresholding with Otsu’s method. Right figure shows the found
OLED cells outlined with a rectangle. On horizontal lines the points are shown
where the optimal vertical edges are detected.

7.3.4 Trajectory Generation Results

As explained in the previous sections, the control method consists of the track-
ing of a trajectory which is generated online, directly based on visual measure-
ments. This section presents results of the proposed method and compares this
with a constant velocity reference trajectory.

Results for Constant Trajectory Tracking

As initial experiment, the response of the control system to a step input is
evaluated (see Fig. 7.12). Control of this step input consists of a simple PID
controller with experimentally tuned control parameters. It can be seen that
the actuators are subject to considerable friction. This friction originates from
the internal dry bearing of the linear actuators and is dominated by viscous
(dynamic) friction and Coulomb (static) friction. For viscous friction, this can
be identified by the relatively low rate of acceleration (i.e., slope of velocity)4.
Static friction (or stiction) is noticeably present at velocities close to zero, as it
takes several iterations before the platform starts moving. Finally, the constant
velocity reference reveals that the friction of the motion system is also position
dependent. This can be identified in the figure as the steady-state behaviour
in the range of 0.075 − 0.15 [s] compared to the steady-state behaviour in the
range of 0.15 − 0.3 [s] is not similar. An explanation for this could be that the
latter range is subject to a greater amount of viscous friction.

Results for Point-to-point Trajectory Tracking

To show the effectiveness of using a near-repetitive pattern for motion con-
trol the trajectory is designed as follows. From standstill a smooth velocity is
designed to a fixed velocity (i.e., νdrop = 4 [px/ f rame] = 28.8 [mm/s]) and ac-

celeration (i.e., αdrop = 0 [px/ f rame2]) at an OLED cell centre. The velocity in
between the cell centres is chosen higher to obtain a higher printing through-
put, and obtained by setting a maximum velocity for each velocity profile. This
results in an average velocity for the trajectory of about ν̄ = 5 [px/ f rame] =
36 [mm/s], while for a constant velocity trajectory this would be equal to the
velocity at the OLED cell centres, i.e., νdrop = 4 [px/ f rame] = 28.8 [mm/s].
This directly motivates the use of a online generated trajectory for motion con-
trol as a speed increase for printing of 25% is easily obtained. Depending on

4Of course the mass of the system also plays a role in this.
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Figure 7.12: Response of the visual control system (i.e., with PID control) on
a velocity step input. Upper and lower figure show the response with dimen-
sions for velocity in pixels per frame and millimetres per second respectively.

the limits of the actuators, this can be increased even more. Finally, it has to
be mentioned that the parameters of the PID controller are retuned for exper-
iments with different control structure. To be more specific, the parameters of
the PID gains for control with feedforward action compared to control without
feedfoward action, are different.

Fig. 7.13 presents the tracking results of the online generated trajectory with
only a PID controller. It can be seen, at the start of the trajectory, that the static
friction (stiction) again takes several iterations to overcome. Furthermore, it
shows that the viscous friction creates a delay between the reference velocity
and the real (or estimated) velocity. This is particularly visible at relatively
low (< 4 [px/ f rame] =< 28.8 [mm/s]) velocities. Furthermore, the friction of
the system causes large disturbances at OLED cell centres (i.e., the local min-
ima where νdrop = 4 [px/ f rame] = 28.8 [mm/s]), and is most likely caused
by the switching of sign of the acceleration (i.e., negative to positive). This de-
lay and disturbance can be compensated for with a feedforward term which
includes the mass of the table as well as a friction compensation term as pro-
posed in Section 7.2.4. A final friction effect can be seen in the velocity range of
0 − 4 [px/ f rame] = 0 − 28.8 [mm/s] and reveals a stick-slip-like phenomena.
This spontaneous jerking motion is caused by alternating sticking and sliding
regimes in the lower velocity range.
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Fig. 7.14 presents the tracking of the online generated trajectory with a
PID controller and the mentioned compensation terms. The parameters for
friction compensation are obtained via the method presented in [72] and via
experimental tuning. In particular, the individual parameters of the Coulomb
and viscous friction (i.e., Fc and Fv) are estimated based on open-loop mea-
surements. A velocity ramp trajectory is executed as reference and from the
resulting measurement response (i.e., velocity vs. time) an initial estimate of
the friction parameters can be retrieved. This initial guess is then tuned on-
line (i.e., closed-loop) to obtain a better motion performance. The mass of the
system M̂t is estimated by weighing the motion system and tuned to obtain a
decent performance. It can be seen that by compensation for the mass of the
system as well as the viscous friction, the measured (or estimated) velocity fol-
lows the reference velocity more close. This is especially visible at relatively
low (< 4 [px/ f rame] =< 28.8 [mm/s]) velocities. In the same velocity range,
however, the stick-slip-like phenomenon is still visible. A compensation for
this is not incorporated as the performance of motion control in this velocity
range is not particularly of interest. This also holds for the stiction effect close
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Figure 7.13: Velocity trajectory control with DTG without compensation
(ėrms no FF = 0.57 [px/ f rame] = 2.56 [µm/ f rame] = 4.1 [mm/s]). Especially at
OLED cell centres (local minima where νdrop = 4 [px/ f rame] = 28.8 [mm/s])
only a PID controller proves not to be sufficient. Upper and lower figure show
the tracking results with dimensions for velocity in pixels per frame and mil-
limetres per second respectively.
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to zero velocity.

The performance of trajectory tracking is evaluated by the root mean square
(RMS) of the error velocity in Cartesian space. Without compensation of the
friction and the mass of the system this is found as:
ėrms no FF = 0.57 [px/ f rame] = 2.56 [µm/ f rame] = 4.1 [mm/s] (see Fig. 7.13).
When the compensation scheme is included the error RMS value is found as
ėrms = 0.40 [px/ f rame] = 1.8 [µm/ f rame] = 2.88 [mm/s], indicating a clear
advantage of the compensation scheme (see Fig. 7.14).

A different important performance measure is the actual velocity on the
centre of the OLED cell. As can be seen in Fig. 7.13, there is a relatively
large error between the reference velocity and the actual velocity on the OLED
cell centres (i.e., local minima where νdrop = 4 [px/ f rame] = 28.8 [mm/s]),
due to a poor controller. Fig. 7.14 shows that with a properly designed con-
troller (i.e., including the feedfoward compensation) this error is clearly lower.
Even though the velocity response has some delay, this amount of delay stays
within bounds (i.e., ±2.9 [px/ f rame] = 20.9 [mm/s] as determined in Section
7.1.3) when considering the moment of printing: ėrms = 0.40 [px/ f rame] =
2.88 [mm/s].
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Figure 7.14: Velocity trajectory control with DTG with feedforward compensa-
tion (ėrms = 0.40 [px/ f rame] = 1.8 [µm/ f rame] = 2.88 [mm/s]). The estimated
velocity stays closer to the reference velocity compared to DTG without com-
pensation. Upper and lower figure show the tracking results with dimensions
for velocity in pixels per frame and millimetres per second respectively.

119



CHAPTER 7. PRODUCT PATTERN-BASED VISUAL SERVOING

Even though a fair amount of noise can be seen in the figures, it must be
noted that this does not necessarily originate from control. The estimation pro-
cess of the velocity itself acts as a clear noise source. Therefore, in order to
obtain a decent motion control performance, an α-β filter [70] is incorporated
to filter out measurement noise (i.e., all experiments include this filter). In fact,
if this α-β filter would be omitted, the motion of the visual control system will
become unstable. Fig. 7.15 shows an experiment with a poorly tuned α-β fil-
ter, which results in delay and overshoot: ėrms poor αβ = 0.64 [px/ f rame] =
2.86 [µm/ f rame] = 4.6 [mm/s]. Finally, it has to be mentioned that the es-
timated velocity shown in all figures is taken directly after the output of the
plant (i.e., before the α-β filter, see Fig. 7.6), to show the real measurements.
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Figure 7.15: In order to filter out the measurement noise and obtain a better ve-
locity estimation, an α-β filter is incorporated for all experiments. To show
the necessity of this, this figure shows a poorly tuned filter. A clear delay
and overshoot can be seen which results in a decreased motion performance:
ėrms poor αβ = 0.64 [px/ f rame] = 2.86 [µm/ f rame] = 4.6 [mm/s]. Upper and
lower figure show the tracking results with dimensions for velocity in pixels
per frame and millimetres per second respectively.
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7.4 Summary

This chapter presented the application and implementation details of prod-
uct pattern-based visual servoing. The method of using the product pattern
as visual encoder for motion control is motivated by regarding the current
state-of-the-art in visual motion control and industrial inkjet printing. As com-
parison, the trade-off between image size and update rate is shown for sev-
eral high-speed vision systems. For industrial inkjet printing (i.e., OLED dis-
play manufacturing by printing a droplet into each display cell), the current
state-of-the-art assumes that the pitch (or time) between individual printing
actions is fixed and a constant print-frequency combined with motor-encoder
feedback for control is sufficient for the manufacturing of displays. However,
when this assumption no longer holds (i.e., a varying pitch due to a flexible
display) current methods no longer suffice. This is mainly due to the fact that
the product (i.e., the location for printing) is not directly measured. The pro-
posed method takes this into account by designing a trajectory online based
on direct visual measurements. The developments for this include a cam-
era calibration method, a feature detection method for the detection of in-
dividual display elements and the visual control method with direct trajec-
tory generation. In more detail, it is shown that, due to the lens, the narrow
field-of-view and the measurement noise, a calibration for lens distortion is
not necessary. The detection of individual display elements is presented for
a 160 × 100 [px] image (i.e., ∼ 0.3 [mm2]) containing 3 × 5 OLED cells where
each pixel is 4.5 [µm] square sized. This allows for a camera and control up-
date rate of 1600 [Hz]. The measurement noise shows to have a standard de-
viation of σ = 0.18 [px] = 0.85 [µm]. The method for visual control consists
of velocity trajectory tracking, where the trajectory is generated online based
on the position of individual OLED cells. As such, at each iteration the next
state of the trajectory is generated based on a predefined 5th order point-to-
point polynomial trajectory with predefined (i.e., 4 [px/ f rame] = 28.8 [mm/s])
velocity on OLED cell centres, and a higher velocity in between OLED cell cen-
tres. This allows for a higher average velocity for the overall motion, which
would be impossible for a constant velocity trajectory if a similar quality of
printing should be ensured. The precise moment of printing is predicted by
an α-β filter as there still exists a mismatch due to the delay of the system and
the spatial difference between print-head and image centre. The feedback for
velocity trajectory tracking is obtained by estimating the velocity of the OLED
cells in between frames. Furthermore, a feedforward control action is added to
compensate for the mass and friction (i.e., a Coulomb and viscous term) of the
motion system. This complete framework is implemented on an experimental
setup consisting of a 2D planar table, a static camera and a FPGA for process-
ing. The details of this setup as well as the implementation of the developed
methodologies are explained and results have been shown which motivate the
proposed method. In particular, the root means square of the velocity error
trajectory is found as ėrms = 0.40 [px/ f rame] = 2.88 [mm/s], indicating a clear
advantage of the compensation scheme and the effectiveness of this visual con-
trol method.
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CHAPTER 8

Vision-Based Obstacle
Avoidance

Abstract. This chapter presents the application and implementation de-

tails of vision-based obstacle avoidance. In particular, vision-based obsta-

cle avoidance is developed by integrating direct trajectory generation into

Cartesian motion design. For comparison, a basic reactive motion scheme

is presented that generates motion on a path planning level based on the

distance towards an obstacle. In addition, for a redundant manipulator,

avoidance of the self-motion of the manipulator towards certain objects is

incorporated into the kinematic control design.

8.1 Introduction and Motivation

With the increasing demand of integrating robotics into every day life and in-
dustry, safety requirements are still a driving factor. Especially in a human-
centred environment, robot motion has to be as smooth as possible and safety
has to be guaranteed. This implies a safe replanning of motion when obsta-
cles are detected. As current state-of-the-art approaches differentiate between
obstacle avoidance (i.e., path planning) and traditional motion control (i.e., tra-
jectory planning), the problem of avoidance is usually solved by designing a
new path (see also Chapter 3 and Section 6.1.1). This means that predefined
kinematic constraints for the trajectory are not taken into account for obstacle
avoidance and only a reactive motion guides the robot away from objects (e.g.
potential field, roadmap [88]).

This chapter presents the application and implementation details of obsta-
cle avoidance of a n-DOF manipulator (n ≥ 6) in Cartesian space and considers
the direct trajectory generation method as proposed in Chapter 6 as novel so-
lution to this problem. In particular, the approach generates a new trajectory
at every iteration, even when no obstacle is detected. Direct trajectory design
is presented for point-to-point and multi-point positioning, for different levels
of constraints. This enables the possibility of incorporating different trajectory
shapes in real-time motion design.

This novel direct trajectory planning approach is compared to a reactive
path planning approach which designs motion without any kinematic con-
straints. A potential field is developed which guides motion away from an
obstacle by distributing the weight for each task (i.e., either positioning or ob-
stacle avoidance) depending on the distance towards an obstacle.

In addition, robotic manipulators are commonly designed with more de-
grees of freedom than necessary for task execution in Cartesian space (i.e., DOF
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of a manipulator > 6). This gives the manipulator the ability to design and ex-
ecute complex motion with respect to a secondary task as is explained in Sec-
tion 3.3.2. As the self-motion of a manipulator (i.e., motion of the manipulator
while keeping the end-effector fixed at a certain pose) can also collide with ob-
stacles (or itself), the redundancy property is now exploited for the avoidance
of these obstacles. Three different avoidance indices, as presented in Section
3.3.2 are experimentally validated and show the effectiveness of avoidance for
the self-motion of the manipulator.

8.1.1 Task and Kinematic Constraints

The task of robotic manipulation is divided in two separate motion solutions.
This includes the solution to generate motion for the end-effector and the so-
lution to exploit motion for the redundant degrees of freedom. In particular,
this is explained in Section 3.3.2, where the solution for redundancy does not
generate motion for the end-effector.

The considered task involves a point-to-point planar (i.e., XY-plane in
Cartesian space, see Fig. 8.1) positioning task, where orientation is not taken
into account. Due to the difficulty in determining a 3D translation difference
from a monocular camera, the avoidance scheme is designed and experimen-
tally verified in 2D Cartesian space. This difficulty originates from the fact that
an image sensor is essentially a 2D measurement array. As such, a
homography-based approach determines only a scaled translation and a sim-
ple object detection approach (e.g., color blob detection) will only give accurate
measurements parallel to the 2D image plane (i.e., depth is only estimated).
However, as methods exists that can give highly accurate 3D measurements
(e.g., by stereo-vision algorithms or depth sensors like the Kinect), this ap-
proach can be easily extended to full 3D obstacle avoidance.

Considering the task, only the initial and final position (a point in Carte-
sian space) of the task are known. The position of a static object which should
be avoided is measured and thus obtained during runtime. The velocity and
acceleration of the initial and final point are defined to be zero (ẋI = ẍI =
ẋ f = ẍ f = 0). Furthermore, the general motion for positioning is constrained
by either a velocity or acceleration constraint (i.e., limitations of the manipu-
lator). Obviously, for path planning these kinematic constraints are not taken
into account.

Finally, kinematic redundancy is exploited on the basis of several geometric
indices (i.e., a distance towards a point, a line and a plane). These variables are
geometric entities in Cartesian space and represent an obstacle (i.e., a perpen-
dicular distance towards it) for avoidance (see also Section 3.3.2).

8.2 Obstacle Avoidance

In this section the mathematical details of obstacle avoidance by both path
planning and trajectory planning is presented. The kinematic control law is
schematically depicted and the additional kinematic redundancy resolution is
discussed.
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Figure 8.1: The Cartesian plane for obstacle avoidance is the XY-plane.

8.2.1 Path Planning

In Section 2.6 a brief overview was given concerning path planning. Meth-
ods such as Probabilistic Roadmaps (PRM) or Rapidly-exploring Random Trees
(RRT) are a popular approach to be implemented on real robotic systems. How-
ever, despite the fact that these methods are sampling-based (i.e., developed to
be implemented in real-time), motion planning is commonly the only task that
has to be executed. When another computationally intensive task has to be
executed at the same time (i.e., visual processing), compromises have to be
made to guarantee real-time performance. In this respect, it was chosen to uti-
lize a potential field-based approach which is computationally low demanding.
Potential field-based approaches typically consist of an attractive or repulsive
function that pulls or pushes a robot towards a goal or away from an obstacle
(see e.g., [76] or [87]). The method presented here is very similar to the concept
of potential fields and defined to achieve a smooth transition between obstacle
avoidance and target following. Two similar techniques can be found in [25]
and [109].

The tasks which are pursued are a smooth transition between obstacle
avoidance and target following and is defined as follows (see also Section 3.3).

q̇ = J#
a(wẋoa + (Iw − w)ẋt) + (I − J#

aJa)q̇0. (8.1)

In this, a division is made between end-effector control (i.e., ė = Jaq̇, where
there error vector is ė = ẋ = wẋoa + (Iw − w)ẋt) and redundancy control
(i.e., (I − J#

aJa)q̇0). End-effector control is performed with the minimum-norm
solution of the joint velocities, while redundancy control makes use of the ho-
mogeneous solution. A smooth transition between obstacle avoidance velocity
ẋoa and target positioning velocity ẋt is created by weighting each velocity ac-
cording to the vicinity towards a certain obstacle.
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As mentioned earlier, due to the difficulty of determining an accurate 3D
translation difference, the path planning scheme is shown in experiments for 2
Cartesian translational degrees of freedom. Therefore, in 2 dimensions, Iw =
[1, 1, 0, 0, 0, 0] and w = [wu, wv, 0, 0, 0, 0] where wu and wv are defined as a dou-
ble sigmoid function as

wl = ws,l

[
tanh

(
dl + do,l

ks

)
− tanh

(
dl − do,l

ks

)]
, (8.2)

for l ∈ {u, v} (see Fig. 8.2).

dl is the distance in pixels towards an obstacle and thus decides the weight
of both the obstacle avoidance velocity ẋoa as well as the target positioning
velocity ẋt. Furthermore, ks is the slope of transition between the two veloci-
ties and do,l is a parameter that determines the center location of the slope ks,
which, when equal for both hyperbolic tangent functions, returns a symmetric
function. When ws,l = 0.5, the function has a range wl : R → [0, 1]. An extra
weight ws,l > 0.5 can be added to create an overshoot around an obstacle. This
gives more space to avoid collisions, since the obstacle cannot be perceived if
it is next to the end-effector. A side effect is that the extra weight works both
ways (i.e., an added negative ẋt), which can be solved, however, with simple
heuristics.

This method is essentially similar to a potential field-based approach. De-
pending on the location of the obstacle in the image (i.e., distance in pixels from
center) a certain weight is distributed over the both tasks (i.e., positioning or
obstacle avoidance). This creates a motion which guides the end-effector away
from objects in the field of view. The weight distribution function shown in
Fig. 8.2 is applied for every DOF that can be directly controlled. As such, this
obstacle avoidance scheme is designed for 2 DOF, for 2D Cartesian obstacle
avoidance motion.
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Figure 8.2: Two double sigmoid functions represent the weight of each task
for visual end-effector control (task positioning ẋt or obstacle avoidance ẋoa) as
defined in (8.1). These weights depend on the obstacle position in the field of
view. Such function is applied for each DOF that is directly controlled (i.e., in
this case twice for obstacle avoidance in 2D).
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8.2.2 Direct Trajectory Planning

Incorporating the avoidance of obstacles into a direct trajectory planner im-
plies that constraints can be directly taken into account (see also Chapter 6).
This includes the change of positions of (via-)points to avoid obstacles while
maintaining certain constraints on these (via-)points as well as the trajectory
itself. Similar to offline trajectory design, the flexibility of direct generation of
trajectories suggests that more complex trajectories can be used for constrained
avoidance. More specifically, two methods are presented, i.e., obstacle avoid-
ance for point-to-point motion and multi-point motion.

For both methods, each iteration a new trajectory is generated, which im-
plies that only the next state has to be computed. The conjunction of these
trajectories is designed with C2 continuity. This means that the trajectory itself,

its first time derivative T ′
and the second time derivative T ′′

are continuous.
In fact, the initial point xI of a trajectory T is also the final point x f of the pre-
vious trajectory. The same holds for both first and second time derivatives of a
trajectory.

Point-to-Point Avoidance

The direct generation of a C2 continuous trajectory with initial (I) and final
point (f) is designed as follows. The constraints which are variable are the final
position, velocity and acceleration:

q f ∈ C f ree, q̇ f = ν f , and q̈ f = α f ,

as well as the global kinematic constraints

q̇max = νmax, and q̈max = αmax. (8.3)

C f ree is denoted as the collision-free space (or free-space) as defined by (3.46).
The constraint vector qc is obtained as

qc = [ qI , q f , q̇I , q̈I , q̇ f , q̈ f ]
T ,

= [ qk−1, q f , νk−1, αk−1, ν f , α f ]
T , (8.4)

where the final constraints q f , q̇ f , q̈ f are defined as an avoidance motion. The
timing of the trajectory is obtained as

tI = 0, and t f = ts + te − ∆tsum, (8.5)

where ts and te is obtained from (6.9) and (6.6) respectively and, as explained
in Section 6.2.3, ∆tsum = Tlnit is the ascending trajectory time with Tl is the
local loop time with iteration count nit. The complete routine for computing
the trajectory online (see Algorithm 6.2) is proposed in Section 6.2.

Multi-Point Avoidance

The direct generation of a C2 continuous 6th order trajectory with initial- (I),
via- (v) and final-point (f) is designed as follows. The constraints which are
variable are the final position, velocity and acceleration, and the position of the
via-point:

{qv, q f } ∈ C f ree, q̇ f = 0, and q̈ f = 0,
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as well as the global kinematic constraints

q̇max = νmax, and q̈max = αmax. (8.6)

The constraint vector qc is now obtained as

qc = [ qI , qv, q f , q̇I , q̈I , q̇ f , q̈ f ]
T ,

= [ qk−1, qv, q f , νk−1, αk−1, ν f , α f ]
T . (8.7)

One option is to use the via-point position qv for avoidance motion and design-
ing the final constraints as a stopping motion (e.g., q̇ f = q̈ f = 0). The timing of
this multi-point trajectory is obtained as

tI = 0, tv = ts,v + te,v − ∆tsum, and

t f = ts, f + te, f − ∆tsum, (8.8)

where

ts,v =





15

8

hv

vmax
,

√
10
√

3

3

hv

αmax



 , ts, f =





15

8

h f

vmax
,

√
10
√

3

3

h f

αmax



 , (8.9)

and where hv = qv − qI and h f = q f − qI and vmax and αmax are the maximum
velocity and acceleration respectively. te,v and te, f are both obtained from (6.6)
as te,l = max {tev, teα}. The complete routine for computing the trajectory on-
line (see Algorithm 6.2) is proposed in Section 6.2.

When an obstacle is detected and a change of final-point (or via-point) con-
straints is incorporated, the global constraint on the trajectory is most likely
changed as well. To guarantee that a constraint is maintained, the method as
proposed in Section 6.2.3 is executed. This method monitors the global con-
straints of the updated trajectory and, if a violation will occur, alters the execu-
tion time (i.e., by adding or subtracting time iteratively).

For consistency the direct point-to-point and multi-point trajectory were
defined with ’q’ as motion variable. If motion is to be designed in Cartesian
space, the design is identical to the mentioned procedure. Furthermore, both
methods are implemented as an event-based scheme, i.e., whenever an obstacle
is present in the field of view a new motion is designed.

8.2.3 Visual Control Law

Kinematic control is achieved by using the control scheme as represented by
(3.16) (see Fig. 8.3). The inputs for direct trajectory generation are developed
as presented in Section 8.2.2. Local joint control is achieved by using a PD con-
troller plus gravity compensation term as described in (3.19). For the obstacle
avoidance via path planning a desired velocity ẋd is not computed and thus not
used. To estimate the joint velocities of the manipulator, the method proposed
in [138] is used. This method is based on the fact that numerical integration can
provide more accurate results than numerical differentiation in the presence of
noise.
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Figure 8.3: Kinematic control scheme for obstacle avoidance with direct trajec-
tory generation.

8.2.4 Self-Motion Control

As explained in Section 3.3.2, for a kinematically redundant manipulator, a
non-zero null space exists due to more degrees of freedom n than necessary
for a particular task in the Cartesian space r (i.e., r < n ). The method used
here is projecting a secondary task onto the nullspace of the main task, i.e., by
adding the homogeneous term (I − J#

aJa)q̇0 with the minimum-norm term. In
this, q̇0 is an arbitrary joint velocity vector, J#

a is de weighted pseudo-inverse
of Ja as defined by (3.23) and I ∈ Rn×n is the identity matrix. One of the
most widely adopted approaches is to solve redundancy by optimizing a scalar
cost function m(q) using the Gradient Projection Method (GPM), i.e., choosing
q̇0 = k0∇m = k0(∂m/∂q)T. This then represents a smooth function for a
secondary (or third) task in terms of some performance index. Several perfor-
mance or distance indices are presented in Section 3.3.2.

For safe operation, the redundancy of the manipulator (i.e., the manipula-
tor’s self-motion) is also controlled to avoid obstacles. This can be defined by
q̇0, to move towards or away from objects. This method is defined as follows.

In robotic manipulators consecutive joint axes may intersect (i.e., rotate in
the same point xin). This means that not all joints are necessary or even appro-
priate for redundancy control. This number of intersecting joints nin is limited
by the total number of joints in the manipulator but practically never exceeds 3
(i.e., nin = {2, . . . , n}). Furthermore, a base joint position is always unsuitable
since it is fixed to the world, and certain joints may be located so close to each
other that evaluation of both is redundant.Let n be the number of joints of the
manipulator and nin − 1 the number of joints in an intersection point. The num-
ber of suitable joint points for evaluation ns is then defined as ns = n − nin − 1,
where the number 1 represents the base joint.

The redundancy formulation to avoid or approach a point in R3 space is
defined in (8.1), where q̇0 = k0∇m. In this,

∇m =
ns

∑
i=1

J#
a,i ẋq,i, (8.10)

where J#
a,i is the weighted Jacobian pseudo-inverse. k0 is a scalar which controls
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the gain due to the second and can be defined as [91]:

k0 =
|J#

a(wẋoa + (Iw − w)ẋt)|
|(I − J#

aJa)∇m|
. (8.11)

This k0 is designed to avoid a large difference between the two main terms in
(8.1). In essence, the redundancy formulation tries to minimize the euclidean
distance de between a control pose xc and the current pose of a joint qi,ns

(i.e.,
defined as xi,ns

):

min
de

{|xi,ns
− xc|}. (8.12)

When the value of k0 is negative (i.e., k0 ∈ [−1, 0)), the control pose acts
as an attractor, i.e., de is minimized. Similarly, when the value of k0 is positive
(i.e., k0 ∈ (0, 1]), the control pose acts repulsive, i.e., de is maximized. This mea-
sure should be chosen with great care, as a too large weight on the nullspace
formulation can result in unstable configurations.

8.3 Experimental Results

Experiments are conducted to show the difference between avoidance via path
planning and avoidance via trajectory planning. Prior to these results the ex-
perimental setup is presented and explained in detail. Finally, the additional
kinematic redundancy scheme for avoidance with respect to self-motion is pre-
sented separately.

8.3.1 Experimental Setup

The selected robotic manipulator is the AMOR anthropomorphic arm1 from
Exact Dynamics, B.V.2 (see Fig. 8.4). The manipulator has 7-DOF and is
equipped with a gripper at its end-effector for the manipulation of objects.

Fully stretched the manipulator has a spherical range of 1.1 [m] and can
rotate unlimitedly around its base (i.e., the range of joint q1 is 360◦). The
camera is located on the end-effector (eye-in-hand), with the gripper’s z-axis
aligned and parallel to the camera’s optical axis. The Denavit-Hartenberg pa-
rameters for modelling the manipulator and deriving its forward and inverse
kinematics can be found in Appendix B, together with the joint ranges for
q = [q1, q2, q3, q4, q5, q6, q7]

T .
Simulations are carried out by using the Robotics [32] and the Epipiolar Ge-

ometry [100] Toolboxes for Matlab. To simulate visual feature detection, a set
of 30 random points is generated, from which two views are created with a
perspective transformation. These two perspective point sets are then input to
the homography calculation, which determines a rotation and scaled transla-
tion difference for control. Normally distributed random noise is added to the
points with zero mean and 5% standard deviation.

For the experimental implementation, all the matrices required by the in-
verse kinematics algorithm are derived using the Robotics Toolbox for Matlab.

1http://www.amorrobot.com/
2http://www.exactdynamics.com
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Figure 8.4: Redundant 7 DOF AMOR robotic manipulator.

The inverse differential kinematics are combined with the homogeneous so-
lution for redundancy. These are translated to and optimized for C/C++, and
implemented using the Eigen library for vector and matrix manipulation. This
is wrapped inside a ROS [117] node for high-level functionality and low-level
device control. Communication with the arm is done via a CAN-USB device,
with different threads managing the data exchange with the CAN device (one
for reading and one for writing) and the inverse kinematics algorithm (with
an update rate of 200 [Hz] and including the computation of the low-level PD
individual joint control). The manipulator’s on-board electronics generate the
actuator’s PWM signals and process sensor data with an update rate of 1000
[Hz]. The camera (Prosilica GE680M) is connected via a Gigabit Ethernet in-
terface (GigE Vision) to a standard notebook with 2 GB of RAM and 2.4 GHz
Intel Core 2 Duo CPU running Linux. The software framework was (partly) de-
veloped by Alejandro Alvarez-Aguirre [4] as part of the Teleoperated Service
Robot (TSR) project3.

8.3.2 Vision-Based Obstacle Detection

For visual processing, the camera takes grayscale images which are processed
using the computer vision library Opencv [14]. Obstacles are detected using
the algorithms as presented in Chapter 4. In particular, the SURF feature de-
tector and descriptor (see Section 4.4.3) is employed to find and match cor-
respondence points in a reference image and a current image. This therefore
includes a database of images (i.e., sets of keypoints of reference images), with
potential obstacles, which are precomputed and prestored in the memory of
the computer. The keypoints that are found in a current view are therefore
continuously compared for a potential match. Subsequently, a homography is
estimated and decomposed (see Section 4.3.1 and Section 4.3.2) which finally
gives a rotation and scaled translation between the end-effector (i.e., the cam-
era) and an obstacle. The vision algorithm is executed at 10 Hz with an image

3Further developments can be found on the website: http://www.win.tue.nl/tsr/
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size of 640× 480 [px] (VGA), which is fast enough to detect slow moving obsta-
cles in the field of view. Fig. 8.5 shows an example of the vision algorithm ex-
ecuted in an office environment with the detected object outlined with a white
rectangle.

Figure 8.5: Surf feature detector executed in an office environment. The obsta-
cle is detected and outlined with a white rectangle.

8.3.3 Obstacle Avoidance via Path Planning

The path planning technique with obstacle avoidance presented in Section 8.2.1
is experimentally verified with the robotic manipulator shown in Fig. 8.4. For
clarity one Cartesian degree of freedom (x-direction) is affected by an obstacle,
which is detected by the camera as explained in Section 8.3.2. The motion task
that is assigned to the manipulator is defined as follows. From the initial point
(start-point in Fig. 8.6) a path is defined through 2 via-points and 1 final-point.
This motion is unconstrained, i.e., no local or global constraints are defined.

The result of this reactive obstacle avoidance scheme can be seen in Fig.
8.6. Clearly the effected motion is not directly kinematically constrained and
only a reactive motion (i.e., a path) is planned. This is shown as the path in be-
tween points is different compared to the motion without obstacle avoidance.
Moreover, the required via-points (and end-point in the upper figure) are not
reached due to the obstacle avoidance motion.

The difference in response between the two figures is due to a difference in
parameters of the obstacle avoidance function (the sigmoid function in (8.2)).
These values (i.e., do,l and ks) can be changed to obtain a different obstacle
avoidance motion.
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Figure 8.6: Two examples of obstacle avoidance via path planning. The circles
denote the distance towards the object, and thus determine the weight of the
tasks (i.e., positioning or avoidance). The lower figure shows that when exe-
cuting motion with less strict parameters (i.e., smaller do,l and ks compared to
upper figure) the realized path stays closer to the required (or desired) path.
This can be seen as the realized and required end-point are the same. For the
upper figure the parameters for avoidance are more strict (compared with the
lower figure) and the realized motion is further away from the required mo-
tion. In particular, the realized motion does not reach the required end-point
due to the obstacle.
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8.3.4 Obstacle Avoidance via Direct Trajectory Generation

In order to assess the avoidance scheme, a scenario is developed in which a
robotic manipulator should execute a predefined planar positioning task, and
is blocked by an obstacle at certain time and location. This predefined motion
trajectory is thus altered at an arbitrary time and location (i.e., when the obsta-
cle is detected). Results for obstacle avoidance are shown with a point-to-point
trajectory and a multi-point trajectory, and include a constraint optimization
for velocity. Prior to this DTG approach, the performance of trajectory tracking
is evaluated.

Trajectory Tracking Performance

The performance of trajectory tracking is evaluated by the root mean square
(RMS) of the error (eRMS) in joint space and Cartesian space (see Table 8.1).
Compared to any high-end industrial manipulator (which typically expresses
accuracy or repeatability in the range of 0.1 to 0.01 [mm]), these results are
an order of magnitude lower in performance. The dominant reason for this is
the relatively low joint update rate (i.e., 200 [Hz]) due to the consideration of
a trade-off between tracking performance and visual updates. If the tracking
performance of the individual joints is required to be higher, a faster update
rate and a more complex compensation to disturbances could be employed,
however, at the cost of an even lower visual update rate. In the case of vi-
sual control, a higher priority is given to the (robust) processing of images, as
this directly accounts for a higher performance in Cartesian space as well (i.e.,
direct visual measurements).

Table 8.1: Tracking Performance

joint eRMS [rad] Cartesian eRMS

q1 0.0064 X 0.0030 [m]
q2 0.0086 Y 0.0056 [m]
q3 0.0052 Z 0.0052 [m]
q4 0.0125 roll 0.0062 [rad]
q5 0.0082 pith 0.0039 [rad]
q6 0.0085 yaw 0.0072 [rad]
q7 0.0064

Results for Point-to-point Whole-arm Movements

Direct trajectory generation means that from any arbitrary state the motion of
the manipulator should be guided to an online updated goal state, while main-
taining certain kinematic constraints. Fig. 8.7 and Fig. 8.8 show the simulation
and experimental results of this scenario for a point-to-point motion. From an
initial start-point (i.e., xI = [0.0, 0.0]T ), a 5th degree polynomial trajectory is
designed to execute a straight-line motion in Cartesian space with predefined
constraints. New final constraints are determined (i.e., position to the right)
when the obstacle is detected (indicated by the arrow) and adapted in the con-
straint vector qc accordingly. In order to not violate the predefined constraints,
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the constraint optimization procedure monitors if a constraint will be violated
in the future. In more detail, Fig. 8.7 simulates a motion that is interrupted at
t = 0.1 [s] by an obstacle. At this moment new final constraints are updated
for the trajectory (i.e., x f = [0.2, 0.3]T). It can be seen that predefined mo-

tion bounds, i.e., vmax = 0.5 [m/s] are not violated. Fig. 8.8 shows a similar
motion in experimental setting. Motion, with initial point xI = [0.05, 0.63]T ,
is now interrupted at t = 0.95 [s] and new final constraints are updated for
the trajectory (i.e., x f = [0.225, 0.93]T). Moreover, the predefined bounds of

vmax = 0.5 [m/s] are not violated. Snapshots of this point-to-point method in
experimental setting can be seen in Fig. 8.11.

Results for Multi-point Whole-arm Movements

A similar scenario is developed that generates motion to avoid an obstacle with
a multi-point trajectory containing 3 points (one via-point is added with only
a position constraint, thus still ensuring C2 continuity). From an initial start-
point, this 6th degree polynomial trajectory is designed to execute a straight-
line motion in Cartesian space with predefined constraints. The extra via-point
makes it possible to control more variables of the trajectory when compared
with point-to-point motion (i.e., one extra position). Fig. 8.9 and Fig. 8.10
show the simulation and experimental results of this scenario. Again here,
new final constraints are computed when the obstacle is detected (indicated
by the arrow) and adapted in the constraint vector qc accordingly. In order to
not violate the predefined constraints, the constraint optimization procedure
monitors if a constraint will be violated in the future and alters the execution
time accordingly. As the constraint is reached, time-optimality is guaranteed.

In more detail, Fig. 8.9 simulates a motion (i.e., xI = [0.0, 0.0]T) that is
interrupted at t = 0.55 [s] by an obstacle. At this moment the constraints
are updated for the trajectory at the via-point (i.e., xv = [0.18, 0.15]T) and
final-point (i.e., x f = [0.125, 0.3]T). It can be seen that predefined motion

constraints, i.e., vmax = 0.5 [m/s] are not violated. Fig. 8.10 shows a sim-
ilar motion (i.e., xI = [0.05, 0.63]T) in experimental setting. Motion is now
interrupted at t = 0.95 [s] and t = 1.15 [s] and the constraints are updated
for the trajectory at the via-point (i.e., xv = [0.18, 0.8]T) and final-point (i.e.,
x f = [0.125, 0.93]T). Moreover, the predefined constraints of vmax = 0.5 [m/s]
are not violated. Snapshots of this multi-point method in experimental setting
can be seen in Fig. 8.12. Comparing the simulation and experimental results,
it can be seen that the via-point is at a different location on the trajectory. This
is most likely due to the time difference when updating the constraint vector
when the obstacle is detected. Also the fact that both via-points differ in value
might play a role.

One issue that remains when designing a multi-point trajectory is the fact
that, due to the addition of a via-point, the trajectory is now a 6th degree poly-
nomial, which no longer implies a minimum-jerk trajectory.
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Figure 8.7: Simulation for direct, online obstacle avoidance with a 5th degree
polynomial (2 points, 3 constraints each). The initial trajectory with initial point
xI = [0.0, 0.0]T is shown as a straight line. The object is smoothly avoided
when detected (as indicated by the arrow in the trajectory, i.e., at t = 0.1 [s])
with constrained motion vmax = 0.5 [m/s]. In particular, for avoidance motion
the final constraints are updated as x f = [0.2, 0.3]T .
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Figure 8.8: Experiment for direct, online obstacle avoidance with a 5th degree
polynomial (2 points, 3 constraints each). The initial trajectory with initial point
xI = [0.05, 0.63]T is shown as a straight line. The object is smoothly avoided
when detected (as indicated by the arrow in the trajectory, i.e. t = 0.95 [s]) with
constrained motion vmax = 0.5 [m/s]. In particular, for avoidance motion the
final constraints are updated as x f = [0.225, 0.93]T .
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Figure 8.9: Simulations for direct, online obstacle avoidance with a 6th de-
gree polynomial (3 points, 3 constraints on extremal points, only position on
via-point). The initial trajectory is shown as a straight line. The object is
smoothly avoided when detected (indicated by the arrows, which occurs at
t = 0.55 [s]) with constrained motion vmax = 0.5 [m/s]. In particular, for avoid-
ance motion with initial point xI = [0.0, 0.0]T , the via-point is determined as
xv = [0.18, 0.15]T and final constraints are updated as x f = [0.125, 0.3]T .
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Figure 8.10: Experiment for direct, online obstacle avoidance with a 6th degree
polynomial (3 points, 3 constraints on extremal points, only position on via-
point). The initial trajectory is shown as a straight line. The object is smoothly
avoided when detected (indicated by the arrows, i.e., at t = 0.95 [s] as well as at
t = 1.15 [s]) with constrained motion vmax = 0.5 [m/s]. In particular, for avoid-
ance motion with initial point xI = [0.05, 0.63]T , the via-point is determined as
xv = [0.18, 0.8]T and final constraints are updated as x f = [0.125, 0.93]T .
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Figure 8.11: Obstacle avoidance via DTG with point-to-point motion.

Figure 8.12: Obstacle avoidance via DTG with multi-point motion.
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Simulation Results for Dynamic Object following

To show the potential of the DTG method towards a dynamic target, a simula-
tion example is presented. In this context, dynamic means that the final point
of the trajectory is continuously changing, at the rate of for instance a vision
sensor. As such, a task is defined which involves the following of a moving
object while ensuring a motion that stays within predefined bounds on the
acceleration. A 5th order polynomial is generated every control cycle, with a
bound on the acceleration of |αmax| = 1 [m/s2]. This trajectory is then updated
at a fixed rate (i.e., every 20 iterations, which translates to 50 [Hz] at a 1 [kHz]
local control rate). At t = 0 [s] the final point of the trajectory is x f = [0.1, 0.3]T .

The object moves towards x f = [0.23, 0.13]T between t = 0.5 [s] and t = 0.9 [s]

and towards x f = [0.14, 0.04]T between t = 1.7 [s] and t = 1.9 [s]. To show that
the DTG method can cope with noisy measurements, the final point update is
subject to noise with 50% standard deviation. This change of x f is adapted in
the constraint vector qc accordingly. To ensure that the predefined bound on
the acceleration trajectories are both kept, the optimization procedure moni-
tors if a constraint will be violated in the future and alters the execution time t f

accordingly. As the constraint is reached, time-optimality is guaranteed. The
results of this simulation can be seen in Fig. 8.13.

8.3.5 Self-Motion Control

As explained in Section 8.2.4, it has to be analysed which joints qualify as suit-
able points for nullspace control. For the 7-DOF redundant manipulator, the
joint pairs q2 − q3, q4 − q5 and q6 − q7 are intersecting. The joints q2, q4 and
q6 are therefore chosen for evaluation of boundary crossing. Each iteration
the position in Cartesian space (i.e., xq,i for i ∈ {2, 4, 6}) is computed and, ac-
cordingly, the shortest (i.e., perpendicular) distance towards several geometric
objects is evaluated as follows. The trajectory of the end-effector is chosen as
defined in Section 8.3.3.

Point Distance Index

The point distance index dp,p defined in Section 3.3.2 with the accompanying
gradient projection as defined by (3.31) is used to show the control of self-
motion of the 7-DOF redundant manipulator. This point distance index is de-
fined as the shortest distance between a point on the manipulator and a point in
Cartesian space. Joint q4 has the most freedom for self-motion and is therefore
chosen for avoidance. Fig. 8.14 and Fig. 8.15 presents two experiments with
different avoidance points (i.e., xo,1 and xo,2 respectively) and the changing of
the gain k0. If this gain is not used (i.e., k0 = 0), the direction for self-motion
of the manipulator is given no particular preference. By giving k0 a negative
value, a negative velocity is generated for joint q4 towards the avoidance point.
This in effect results in a motion which pushes joint q4 away from the avoid-
ance point. It can be seen in Fig. 8.14 that such avoidance motion is highly
dependent on the configuration of the robot and the desired end-effector mo-
tion. In particular, Fig. 8.14 (i.e., k0 = −0.6) shows that for a greater overall
avoidance motion, a compromise has to be found at different times.
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ÿ

Figure 8.13: Simulation of direct trajectory generation for the following of a
dynamic object with a 5th degree polynomial. The start position of the object is
the final point x f = [0.1, 0.3]T of the trajectory at t = 0 [s]. The object moves

towards x f = [0.23, 0.13]T between t = 0.5 [s] and t = 0.9 [s] and towards

x f = [0.14, 0.04]T between t = 1.7 [s] and t = 1.9 [s]. Upper and middle figure
shows that the object measurements are noisy, however, the position trajecto-
ries are not. Lower figure shows a C0 continuous acceleration trajectory with
a bound on the acceleration: |αmax| = 1 [m/s2] guaranteed by the constraint
optimization procedure.
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Perpendicular Distance Index

The perpendicular distance index dp,l defined in Section 3.3.2 with the accom-
panying gradient projection as defined by (3.38) is used to show the control of
self-motion of the 7-DOF redundant manipulator. This perpendicular distance
index is defined as the perpendicular distance between a point on the manip-
ulator and a line in Cartesian space, i.e., from the base of the manipulator to
the end-effector; Lbe. Joint q4 is again chosen as this has the largest freedom for
self-motion. In this experiment, joint q4 is controlled to be attracted towards the
line Lbe. In Fig. 8.16 the perpendicular distance towards this line dp,l , shows to
be smaller when a larger gain k0 is executed. One drawback is that the cumu-
lative distance of all joints (i.e., dtotal , the covered distance of all joints) turns
out to be larger.

Boundary Index

The boundary distance index dp,b defined in Section 3.3.2 with accompanying
gradient projection as defined by (3.44) is used to show the self-motion of the
7-DOF redundant manipulator. This boundary distance index is defined as the
perpendicular distance between a point on the manipulator and a boundary
surface (plane) in Cartesian space. Three points are selected; the base of the
manipulator x1 = [0, 0, 0]T , a point directly above the base x2 = [0, 0, 1]T and a
point in space completing a plane that separates the manipulator from a certain
boundary, x3 = [1, 1, 0.5]T . The distance of joint q4 perpendicular towards this
plane, dp,b is shown in Fig. 8.17. It is shown that for larger positive values of k0

the joint q4 is attracted towards the plane, and conversely, for larger negative
values of k0 the joint q4 is pushed away from the plane.

These results obviously depend highly on the task at hand (i.e., the tra-
jectory) and the configuration of the robot. The simplicity of this approach,
however, is a high motivation to include self-motion avoidance into an obsta-
cle avoidance scheme for robotic manipulators.

Furthermore, these indices are all determined as fixed points in Cartesian
space. Of course it is possible to include the avoidance of self-collision, by
including indices that represent points on the manipulator. However, a gen-
eral definition and representation of this is not easily determined and can be a
cumbersome task. A more logical solution towards self-collision avoidance is
to restrict the motion of the end-effector such that self-collision will not occur.

143



CHAPTER 8. VISION-BASED OBSTACLE AVOIDANCE

0 50 100 150 200
0.15

0.3

0.45

0.6

iteration [−]

d
p

,p
 [

m
]

Distance between joint q
4
 and x

o,1

 

 

k
0
= 0

k
0
 = −0.4

k
0
 = −0.6

Figure 8.14: By altering the gain factor k0 that weights the effect of the velocity
of self-motion, it is shown that a stronger gain corresponds to a bigger repul-
sion force towards a point. This in effect creates a larger distance dp,p between
joint q4 and avoidance point xo,1. Obviously this is dependent on the trajec-
tory and the configuration of the robot, as is shown by the experiment where
k0 = −0.6 that has to compromise at different times (i.e., lower distance be-
tween the iteration range 50 − 100) for a greater overall avoidance distance.
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Figure 8.15: Similar example of repulsion by altering the gain k0 that weights
the effect of the velocity of self-motion. The point xo,2 is chosen directly under-
neath joint q4 so that it will be pushed upwards.
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Figure 8.16: The distance index dp,l used is the shortest (perpendicular) dis-
tance from joint q4 towards base - end-effector centreline Lbe. For increasing
values of k0, the joint q4 stays closer to this line Lbe. The total travelled distance
dtotal of all joints, however, turns out to be larger in this case.
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Figure 8.17: Avoidance or attraction towards a plane is realized for different
values of k0. For larger positive values of k0, the perpendicular distance of joint
q4 towards the plane, dp,b becomes smaller (i.e., attraction), and conversely, for
smaller values of k0, the perpendicular distance of joint q4 towards the plane,
dp,b becomes larger (i.e., avoidance).
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8.4 Summary

This chapter presented and proposed several solutions towards the applica-
tion of vision-based obstacle avoidance. Methods that were presented in pre-
vious chapters are elaborated with respect to this similar task. In particular, a
reactive path planning method is shown which avoids an obstacle by weight-
ing the velocity of the end-effector (i.e., the camera) according to the vicin-
ity towards an obstacle. This is essentially a path planning approach as con-
straints on a kinematic level are not directly taken into account. In order to
incorporate such constraints online, a direct trajectory generation method is
developed which designs or alters a trajectory online based on direct visual
measurements. The method is presented for point-to-point and multi-point
trajectories and includes an optimization scheme which guarantees that a pre-
defined global kinematic constraint is maintained. Besides this obstacle avoid-
ance method for the end-effector of a manipulator, obstacle avoidance is also
included for the self-motion of a redundant manipulator. This avoidance mo-
tion is based on the gradient projection method, and includes several indices
for avoidance, i.e., the perpendicular distance towards a point, a line and a
plane.

This complete framework is implemented on a 7-DOF redundant robotic
manipulator, consisting of an eye-in-hand camera with processing on a stan-
dard notebook. The details of this setup, as well as the implementation of the
developed methodologies are explained and results are shown which motivate
the proposed method. In particular, visual processing is executed at 10 [Hz]
with an image size of 640 × 480 [px], the kinematic controller (which includes
the direct and differential kinematics) is executed at 200 [Hz] and local joint
control is executed at 1 [kHz]. Due to this relatively low update rate (i.e.,
200 [Hz]), the performance of trajectory tracking (i.e., ēRMS = 0.008 [rad] in
joint space) is less accurate than high-end industrial manipulators (i.e., an or-
der of magnitude lower), however, the direct visual sensing approach accounts
for an improved performance in Cartesian space. Finally, simulations and ex-
periments are conducted to show the difference between obstacle avoidance on
a path-planning level compared to obstacle avoidance on a trajectory-planning
level. For obstacle avoidance with direct trajectory generation obstacles are
smoothly avoided and kinematic constraints are maintained due to the opti-
mization scheme. Experimental results also show the effectiveness of obstacle
avoidance for the self-motion of the manipulator by regarding the aforemen-
tioned distance indices.
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CHAPTER 9

Conclusions and
Recommendations

Abstract. In this final chapter, the main conclusions of this research are pre-

sented. Following, several recommendations for improvements and future

work are given.

9.1 Conclusions

The main objective of this work has been the development and implementa-
tion of methodologies that provide robots with the ability to use visual mea-
surements in their activities in a direct and constrained way. This is motivated
by the fact that visual controlled motion designs a path for positioning (in-
stead of a trajectory which includes time) and changes of constraints (spatial
or kinematic) can not (directly) be taken into account by current state-of-the-
art solutions. The developments that take these issues into consideration are
as follows.

Feedforward Visual Servoing

Traditional visual servo control systems can be divided into two common ap-
proaches, image-based (IBVS) and position-based visual servoing (PBVS). As
the names suggest, IBVS designs motion based on image-space feedback and
PBVS designs motion based on 3D Cartesian-space feedback. A combination
of both methods is known as hybrid visual servoing. For example, the method
designed by Kyrki et al. [86] designs a shortest path in Cartesian space while
guaranteeing object visibility. In this, object visibility is only guaranteed by an
image error, and thus, disturbances typical for motion control systems (i.e., fric-
tion, gravity) could play a large role. The result is that the range of motion can
be fairly limited, as is shown in experimental setting. A method is proposed,
denoted feedforward visual servoing, that overcomes these issues by combin-
ing position-based visual servoing with a rotational image-based feedforward
control action. This effectively ensures the field-of-view constraint and adds
a greater range of motion for e.g. exploration around an object. It is shown
that by definition the stability properties of the initial position-based method
do not change.

The approach is validated in simulation and experimental setting with a
7-DOF redundant manipulator with eye-in-hand camera. A comparison with
two other methods (i.e., traditional position-based visual servoing and the par-
titioned approach by Kyrki et al. [86]) is given where the advantage of the
proposed approach is clearly shown.
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For the development of this method several other contributions are pro-
posed. These are listed as follows.

• The modelling of 3D vision, consisting of the pinhole camera model, a
camera calibration method and the modelling of projective transforma-
tions (i.e., a homography) is discussed and developed in software.

• The implementation and comparison of feature detectors for planar ob-
ject detection. A review is made of existing detection algorithms (i.e.,
several corner and blob detectors), which are analysed towards a real-
time implementation. Due to their strong descriptive properties, SIFT
and SURF are chosen for a more thorough comparison. SURF is finally
chosen because of its computational advantages (i.e., robust keypoint de-
tection with 70 matches in 140 [ms] and thus an order of magnitude faster
than SIFT), and the ability to tune between number of found keypoints
and processing time.

• The implementation and evaluation of homography estimation and de-
composition techniques for 3D visual measurements between two views.
These transform the two points-sets obtained from SURF (i.e., from a ref-
erence image and a current view) into a 3D error pose.

• The implementation of an image-based, a position-based and a hybrid
visual servoing technique in simulation and experimental setting.

Direct Visual Servoing

A method is developed that incorporates direct visual measurements into the
design of motion. For traditional encoder-based control systems, motion is
designed based on the readings of the motor-encoder. This implies that the
control performance is dependent on several factors which are unrelated to the
sensor measurements (e.g., stiffness and inaccuracies of the motion and fixa-
tion system, uncertainties in system modelling). Furthermore, as the position-
ing is executed with respect to a fixation system and not directly with respect
to the product itself, encoder-based measurements are indirect. This leads to
an inherent mismatch between the location of measurements and the location
of task execution. By controlling a motion system with feedback directly ob-
tained from visual measurements, typical traditional difficulties as found in
encoder-based motion systems can be avoided.

The approach is motivated by considering the industrial application of
inkjet printing. In this, a near-repetitive product pattern (an OLED display
with an array of pixels/cells) needs to be manufactured by printing a droplet
of polymer into each display pixel. Current state-of-the-art solutions solve the
motion control problem with encoder-based feedback, which fail if the pitch
(or time) between print actions is not identical. For the proposed approach,
motion is designed with a velocity trajectory which is designed online, based
on direct visual measurements. On OLED cell centres the velocity is prede-
fined (4 [px/ f rame] = 28.8 [mm/s]), while in between centres the velocity is
designed higher. This results in a higher average velocity for the overall mo-
tion, which would be impossible for a constant velocity trajectory if a similar
quality of printing should be ensured.
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For the development of this method several other contributions are pro-
posed. These are listed as follows.

• A method for the calibration of a lens with short depth-of-view is de-
veloped. Short depth-of-view means that traditional macro-calibration
methods do not suffice, as only a planar calibration pattern exactly per-
pendicular to the image sensor can be utilized. It is shown that, due to
the lens, the narrow field-of-view and the measurement noise calibration
for lens distortion is not necessary.

• A robust method for the visual detection of individual display cells is
developed. This method is robust against lighting changes and faults of
the substrate (e.g., surface cracks, dust) or in individual cells. The images
have a size of 160 × 100 [px], contain 3 × 5 OLED cells and have a pixel
size of 4.5 [µm]. This allows for a visual update rate of 1600 [ f ps]. The
measurement noise shows to have a standard deviation of
σ = 0.18 [px] = 0.85 [µm].

• A direct visual control method for display manufacturing is proposed.
The method consists of a PID with velocity feedback and a feedforward
compensation scheme for known disturbances (i.e., mass of the table and
friction of the motors). The velocity trajectory is generated online based
on direct visual measurements, where the time for triggering the print-
head is predicted based on an α-β filter.

• The developed method is implemented on an experimental setup, con-
sisting of a 2D planar table, a static camera and an FPGA for processing.
The direct visual control structure is executed at 1.6 [kHz], and includes
the processing of images, as well as the computation of the trajectory
and the control law. The performance of the control system (i.e., velocity
trajectory tracking) is determined by the root mean square of the error
velocity: ėrms = 0.40 [px/ f rame] = 1.8 [µm/ f rame] = 2.88 [mm/s].

Direct Trajectory Generation

A method is developed that designs a trajectory directly based on the current
state and events. This implies that (changes of) constraints (i.e., spatial or kine-
matic) can be incorporated at each iteration and a fast response to disturbances
is possible. Traditional motion control designs a trajectory offline (which re-
mains unchanged during execution), where kinematic constraints can be in-
corporated in a straight-forward manner. Sensor-based motion control on the
other hand directly reacts to sensor-readings (e.g., visual detection of an ob-
stacle), however, kinematic constraints can not be incorporated in a straight-
forward manner. The proposed approach combines both methods into one,
where a new trajectory is generated each iteration, which takes direct mea-
surements and constraints into account.The method is validated in two exper-
imental settings.

First, when considering the industrial application of inkjet printing, a near-
repetitive product pattern serves as visual encoder which is used as input for
trajectory generation. The fact that the pitch between display cells is vary-
ing motivates the benefit of the direct trajectory generation method over an
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encoder-based approach. Experimental results are presented with a 2D planar
positioning table with sensing and positioning at micrometer scale.

Second, current state-of-the-art solutions for obstacle avoidance for robotic
manipulators commonly design and execute motion on a path planning level.
The proposed approach designs and executes an obstacle avoidance motion on
a trajectory planning level. Experiments with a 7-DOF anthropomorphic ma-
nipulator show smooth constrained motion for obstacle avoidance, compared
to a reactive potential field-based approach. This robotic manipulator (with
eye-in-hand camera and processing on a standard notebook) executes visual
processing at 10 [Hz] with an image size of 640 × 480 [px]. The kinematic con-
troller (which includes the direct and differential kinematics) is executed at
200 [Hz] and local joint control is executed at 1 [kHz].

For the development of this method several other contributions are pro-
posed. These are listed as follows.

• The development and implementation of an event- and rate-based
method for direct trajectory generation. For rate-based trajectory genera-
tion a new trajectory is computed at a fixed rate, whereas for event-based
trajectory generation a new trajectory is computed whenever an event
occurs.

• The development and implementation of direct trajectory generation for
point-to-point and multi-point motion. Trajectories with multiple points
can be beneficial when more complex motion has to be designed (for e.g.,
multiple obstacles). This also includes the order of constraints at each
point, as well as the order of continuity of the trajectory.

• The development and implementation of a constraint optimization
procedure that alters the execution time of the trajectory online based on
changed constraints. When constraints of a trajectory are changed online,
the predefined constraints (e.g., maximum velocity or acceleration) will
also change. Ensuring that the optimization method will guarantee to
reach a given constraint effectively makes the trajectory time-optimal.

• The development and implementation of visual obstacle detection. Based
on the visual detection methods for 3D visual measurements, a similar
approach is developed to detect obstacles in the manipulator’s field of
view. Descriptors of several images are pre-stored in memory and con-
tinuously sought for in the current image. A homography estimation and
decomposition then computes the 3D position of the object in the field of
view with respect to camera.

• The implementation of a potential field-based obstacle avoidance tech-
nique. In this, the weight between the positioning task and the avoidance
task depends on the vicinity towards an object.

• The development and implementation of an obstacle avoidance
technique for the self-motion of a redundant manipulator. This includes
the derivation of several distance indices (i.e., towards a point, a line and
a plane in 3D Cartesian space) and the development of these in the gra-
dient projection method for self-motion control.
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9.2 Recommendations

As directions for future work several recommendations are made that could
improve or build upon the proposed developments.

Distributed Processing

The developed methods for visual control are all executed on a single process-
ing platform. For visual control of the robotic manipulator this is a notebook
running Linux, for visual control of the OLED display this is an FPGA. Besides
the processing of the visual data, also the control algorithm (local and global)
and the scheduling of these is executed on this processor. The consequence of
this is that a large amount of processing power is not devoted to the process
which requires it most. It would be more desirable if a processor is completely
devoted to its task at hand. For instance, one processor (e.g., an FPGA directly
connected to the image sensor) could be completely devoted to process images,
while a separate processor takes care of the scheduling of tasks and the global
control law. As such, this enables the miniaturization of local, distributed con-
trollers with individual processing abilities (e.g., low-cost FPGA). In this way,
utilization of processing abilities is fully exploited and delays due to one pro-
cess will not interfere with other processes.

Limitation of Inkjet Printing

The performance of the developed sensing and motion planning method in
terms of printing speed is limited by the properties of the motion system. Con-
sider for instance the resolution of the camera. This setting restrains the frame
rate of the camera and as such the update rate for control and the design of
motion. This in effect limits the drop-on-demand print frequency for the man-
ufacturing of a display. Current standards in drop-on-demand printing sys-
tems (i.e., frequencies of printing in the range of 10 − 40 [kHz] are possible) as
well as the developments in vision systems design (i.e., frame rates > 10 [kHz]
for area-scan cameras, > 50 [kHz] for line-scan cameras), suggest that a devel-
opment of a visual control system with limits closer to this state-of-the-art is
possible. However, as the choices for the vision system as well as the motion
system can be interdependent, and the fact that the parameter space for such
design can be quite large, a straight-forward analysis does not give a clear op-
timal path. A more preferable solution is to utilize an automated method (i.e.,
design space exploration) which makes an optimal design choice based on cer-
tain predefined requirements (e.g., accuracy, update rate) or system properties
(e.g., sensor resolution, frame rate).

Performance Improvement

The introduction of depth cameras such as the Microsoft Kinect enables an im-
provement for sensing compared to mono-vision cameras. For avoidance mo-
tion such sensing ability is essential, as a homography-based approach only
provides a translation up to a scale factor. A second addition which would
improve performance of the developed methods in short term is the use of
available sensors for estimation. More specifically, standard industrial motors

151



CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

are equipped with motor encoders, and can be used to attain a higher perfor-
mance in motion control. For example, the developed planar motion table is
controlled with visual feedback. This feedback consists of an estimated veloc-
ity, obtained at the same rate as the camera, which contains a fair amount of
noise (due to visual processing). A more accurate estimation could be obtained
from the available motor encoders, which are sensing in the same plane (i.e.,
coordinate frame), assuming that the linear velocity of the motor is equal to
the velocity of the table. One condition, however, is that this motor encoder
should have a higher resolution and update rate than the image sensor. For
reference, the encoder currently present in the actuator has a 10-bit data up-
date rate of 10 [kHz], with a resolution of 8 [µm]. If this is sufficient for an
improved velocity estimate has to be determined experimentally.

Dynamic Obstacles

The obstacle avoidance method as proposed with direct trajectory generation
is only assessed with static obstacles. From a computational point of view,
the limits for the avoidance of obstacles is (to some extend) dependent on the
computational resources. The detection of fast moving obstacles is therefore
limited by the sampling rate of the camera and the processing power of the
system. In this thesis one simulation example of the tracking of a dynamic
object is presented. In order to explore the full potential of the DTG method
regarding dynamic objects, a thorough analysis with experimental implemen-
tation should be carried out. This is directly related to the implementation of
kinematic control. As in such case it is assumed that the motion of the ma-
nipulator will not be executed at high velocities, this therefore also limits the
response when fast motions are detected. Future work should therefore be fo-
cussed on control which includes dynamics instead of kinematics.

Combining DTG with a Sampling-based Planner

In the proposed solution towards obstacle avoidance, the path (i.e., positions
in free space) is determined from visual processing. The fact that obstacles are
assumed (or simplified) as simple shapes (i.e., polyhedrons) is, however, quite
restricting. In fact, in order to take advantage of the configuration of objects
(i.e., the space these occupy), a better sensing or modelling is necessary. One
direction of approach could be to employ a sampling-based planner which de-
termines a free path in a static and cluttered environment. This should there-
fore include a sensing system which captures the whole 3D space (e.g., a depth
camera such as the Kinect). As these methods are known to have a high compu-
tational load, distributed processing (as mentioned earlier) should be applied.

By taking these developments and considerations into account, the true
benefit of vision in robot control can effectively be utilized. As intended, these
benefits reach further than simple advantages in performance of control or ro-
bustness of task execution. When such system is finally combined with a ser-
vice robot, where a multitude of tasks are widely available, it is then to be
proven useful for actual societal issues. As an assistant for tasks in human care
environments, with safe operation as main objective, the goal of integrating
robotics in everyday life becomes a clear possibility.
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APPENDIX A

Minimum Jerk Trajectory:
Proof

Hogan showed in [63] that smoothness of human arm movement can be quan-
tified as a function of jerk. Such motion between two points is coordinated by
minimizing the functional F, which is the sum of squared jerk along its trajec-
tory:

F(q(t)) =
1

2

∫ T

t=0
q(3)(t)dt2 =

1

2

∫ T

t=0

[
d3q(t)

dt3

]2

dt. (A.1)

To find the minimum of this functional, calculus of variations is employed. In
essence this involves determining the derivative of the functional with respect
to a small perturbation. The minimum is then found when that derivative
is zero. Let the variation be a function η(t) which has the properties that it
vanishes smoothly at the boundaries. That is:

η(t) :





η(t0) = 0 η(t1) = 0

η̇(t0) = 0 η̇(t1) = 0

η̈(t0) = 0 η̈(t1) = 0

(A.2)

In order to minimize F(q(t)), we replace q(t) with q(t) 7→ q(t) + cη(t), where
c is the differentiation variable. We now proceed with

F(q + cη) =
1

2

∫ T

t=0
(q(3) + cη(3)dt2. (A.3)

Differentiation with respect to c yields

dF(q + cη)

dc
=

∫ T

t=0
(q(3) + cη(3))η(3)dt, and

dF(q + cη)

dc

∣∣∣∣
c→0

=
∫ T

t=0
q(3)η(3)dt. (A.4)

Using integration by parts, this is rewritten as

∫ T

t=0
q(3)η(3)dt =

∫ T

t=0
u dv = uv

∣∣∣∣
T

0

−
∫ T

t=0
v du (A.5)
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where u = q(3), dv = η(3) dt, du = q(4)dt, and v = η̈. In this, q(3) represents the

third and q(4) represents the fourth derivative of q. This leads to

∫ T

t=0
q(3)η(3)dt = q(3)η̈

∣∣∣∣
T

0

−
∫ T

t=0
η̈q(4)dt = −

∫ T

t=0
η̈q(4)dt

−
∫ T

t=0
η̈q(4)dt = −

∫ T

t=0
u dv = −uv

∣∣∣∣
T

0

+
∫ T

t=0
v du (A.6)

where in this case u = q(4), dv = η̈ dt, du = q(5)dt, and v = η̇. Continuing, we
get

−
∫ T

t=0
η̈q(4)dt = −q(4)η̇

∣∣∣∣
T

0

+
∫ T

t=0
η̇q(5)dt =

∫ T

t=0
η̇q(5)dt

∫ T

t=0
η̇q(5)dt = q(5)η

∣∣∣∣
T

0

−
∫ T

t=0
ηq(6)dt = −

∫ T

t=0
ηq(6)dt (A.7)

It shows that the final integral is the derivative of our perturbed functional.
That is:

dF(q + cη)

c

∣∣∣∣
c→0

= −
∫ T

t=0
ηq(6)dt ≡ 0. (A.8)

As this property has to hold for any function η(t), we can reduce (A.8) to

q(6) = 0 (A.9)

which means that any function which has its 6th derivative equal to zero will
minimize the jerk.

Richardson discussed in [119] why a functional that minimizes a higher
order derivative would not be more smooth for reaching movements. It was
found that with increasing order of the derivative nod, the solution to the func-
tional q(t) approaches a step function. This means that with increasing nod, the
peak speed also increases, with regard to the average speed. A ratio rv can then
be defined which relates the average speed and the peak speed. Table A.1 lists
this ratio for different orders of derivative. Psychophysical experiments done
by Flash et al. in [45] revealed that human reaching movements have a ratio
rv equal to 1.75, which most resembles a minimum jerk trajectory (i.e., where
nod = 3).

Table A.1: ratio average-peak velocity for order of derivative nod

nod = 2 nod = 3 nod = 4
ratio rv 1.5 1.875 2.186

human ratio rv ≈ 1.75
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APPENDIX B

7-DOF Redundant
Manipulator AMOR

Table B.1: DH parameters for redundant manipulator AMOR

i αi ai [mm] di [mm] range
1 −π

2 a1 = 62.3 d1 = 155 ∞

2 −π
2 0 0 150◦

3 π
2 a3 = 97 d3 = 419.46 240◦

4 −π
2 0 0 165◦

5 π
2 a5 = 50.2 d5 = 358.2 ∞

6 −π
2 0 0 175◦

7 0 0 d7 = 70 ∞

d1

a1

d3 d5

a3

a5 d7

Figure B.1: Redundant 7-DOF AMOR (anthropomorphic arm) robotic manip-
ulator developed by Exact Dynamics B.V.1.

1 http://www.amorrobot.com
http://www.exactdynamics.com
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Samenvatting

Met de groeiende belangstelling voor de integratie van robotica in het dagelijks
leven en de industrie, nemen de eisen met betrekking tot de kwaliteit en de
kwantiteit van toepassingen even snel toe. Deze trend kan in het bijzonder
worden herkend in toepassingen met visuele perceptie.

Aangezien in een huiselijke omgeving visuele perceptie voorname-
lijk wordt gebruikt voor herkenning en lokalisatie, is veiligheid de drijvende
factor voor het ontwikkelen van intelligente, visuele regelalgoritmes. In het
bijzonder, een robot die werkzaam is in een menselijke omgeving mag niet in
botsing komen met obstakels en de uitgevoerde beweging moet zo soepel als
mogelijk zijn. Bovendien, aangezien de omgeving niet op voorhand bekend
is, zijn hoge eisen aan de robuustheid van beeldverwerkingsalgoritmes een
noodzaak.

Anderzijds, in een industriële setting is de omgeving op voorhand be-
kend en wordt veiligheid hoofdzakelijk gewaarborgd door uitsluiting van een
menselijke operator. Bovendien krijgen visuele regelstrategieën veel aandacht
van de industrie om een standaard oplossing te worden voor robotische auto-
matiseringstaken. Ondanks deze redenen worden applicaties sterk vereen-
voudigd. Bijvoorbeeld, methoden zoals visuele foutdetectie zijn al een vol-
wassen techniek in industriële automatisering, waar een statische camera een
product observeert (bijvoorbeeld op een lopende band) en controleert of deze
aan bepaalde eisen voldoet. Deze handelingen kunnen worden uitgevoerd op
een relatief hoog tempo vanwege de eenvoud van het systeem (bv. statische
camera) en de vereenvoudiging van de verwerkingstaak (bv. binaire beelden).

Voor beide gebieden zijn de geı̈dentificeerde problemen vergelijkbaar.
Voornamelijk is dit het trage karakter van (robuuste) beeldverwerking, met
betrekking tot de steeds groeiende vraag naar een toename in snelheid en een
vermindering van vertraging. Deze twee toepassingsgebieden met overeen-
komstige beperkingen motiveren het ontwerp van een meer directe bena-
dering van vision in visuele regelsystemen. Om te voldoen aan de eisen voor
volgende generatie visuele regelsystemen, worden in dit proefschrift metho-
den gepresenteerd die visuele metingen gebruiken als directe terugkoppeling
voor bewegingsplanning.

Ten eerste, voor industriële robotica, om de vereiste positionerings-
nauwkeurigheid te verkrijgen, dient het meet- en bevestigingssysteem zeer stijf
en doordacht te zijn ontworpen, wat hoge kosten en een lange ontwerptijd met
zich meebrengt. Door het meten van de positie van objecten direct met een
camera, in plaats van indirect door motor encoders worden de eisen van het
meet- en bevestigingssysteem minder veeleisend. Bovendien motiveert dit de
miniaturisatie van het complete regelsysteem. Deze aanpak is experimenteel
gevalideerd op een vereenvoudigde 2-dimensionale positioneertafel (dat wil
zeggen, met aanzienlijke wrijving en slechte fixatie), en bereikt vergelijkbare
prestaties in vergelijking met encoder-gebaseerde positioneersystemen.

Ten tweede, in een menselijke omgeving kan deze directe waarneming tra-
ditionele visuele regelsystemen verbeteren wanneer deze onderhevig zijn aan
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bepaalde verstoringen. In het bijzonder wordt een methode voorgesteld die ge-
bruik maakt van een beeld-gebaseerde feedforward regelaar bovenop een tra-
ditionele positie-gebaseerde visuele servoregeling om verstoringen zoals
wrijving of slecht ontworpen lokale regelaars te overwinnen. Deze visuele
feedforward regelactie is alleen actief wanneer een beeld-gebaseerde fout aan-
wezig is en verdwijnt wanneer deze fout naar nul gaat. De methode wordt
gevalideerd op een antropomorfe robotische manipulator met 7 vrijheids-
graden, bedoeld voor gebruik in de menselijke zorg-omgeving.

Ten derde, het direct waarnemen van een product geeft aanleiding tot het
direct ontwerpen van beweging. Terwijl bij traditionele methoden het bewe-
gingstraject offline wordt ontworpen en niet kan worden gewijzigd tijdens
uitvoering, kan bij directe trajectorie generatie de beweging van de volgende
tijdstap berekend worden aan de hand van de huidige toestand en gebeurtenis-
sen. Dit betekent dat op elk moment, de trajectorie van een bewegingssys-
teem kan worden gewijzigd met betrekking tot bepaalde gewenste kinemati-
sche of dynamische beperkingen. Voor industriële toepassingen maakt dit de
productie van bijna-repetitieve of niet-starre structuren (bijvoorbeeld flexibele
beeldschermen) mogelijk. Wanneer toegepast op een robotische manipulator,
worden obstakels niet langer vermeden op een pad-planning niveau, maar op
een trajectorie-planning niveau waar kinematische of dynamische beperkin-
gen kunnen worden meegenomen. Dit resulteert in een beweging die soepeler
is dan de beweging die wordt verkregen met het vermijden van obstakels door
middel van pad-planning. Voor beide toepassingsgebieden is deze directe tra-
jectorie generatie methode uitgevoerd en toont een hoge flexibiliteit in bewe-
gingsontwerp.

166



Acknowledgements

Even though it might have seemed I’ve been living in isolation for the last 4
years, there are many people who have contributed in one way or the other.
Therefore, I would like to express my gratitude.

Foremost, I want to thank Henk Nijmeijer and Pieter Jonker for giving me
the chance to do research in this very exciting and promising field.
Henk, the freedom you gave me, the always on-the-spot comments and your
eagle-eye view are all admiring. I feel privileged to have been part of your
group. Pieter, your decision a long time ago to spend one day a week in Eind-
hoven is probably one of the reasons why I decided to stay around for another
four years. Despite the chaos, it was always a pleasure to have discussions
and build upon your many great ideas. I am very grateful that spending these
years under both your supervision was an invaluable opportunity in my pro-
fessional and scientific career.

A special thanks goes to Zhenyu for all your hard work and commitment.
Your level of helpfulness is impressive; I will no longer bother you for that
one extra experiment. The same appreciation goes out to Alejandro. All our
discussions (robotics related or not), the (not) fixing of the robot, the constant
wondering if you would show up or not; I have enjoyed every moment.

Much appreciation also goes out to Henk Corporaal, Dragan Kostić and ev-
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Stellingen

behorende bij het proefschrift

Direct Methods for Vision-Based Robot Control

Application and Implementation

1. Het meten en terugkoppelen van visuele informatie in een regelsysteem
biedt voordelen wanneer de transformatie tussen product en meetlocatie
onzeker of onbekend is. Een directe, relatieve meting tussen product en
gereedschap omzeilt deze transformatie. (Dit proefschrift)

2. Wanneer uitgevoerd op voldoende hoge snelheid, kan de terugkoppeling
van een regelsysteem uit slechts een camera-gebaseerd signaal bestaan.
(Dit Proefschrift)

3. Het instantaan en ’real-time’ genereren van een trajectorie voor roboti-
sche regelsystemen, maakt het mogelijk om deze trajectorie instantaan
en ’real-time’ aan te passen. Hiermee kan de beweging van een visueel
regelsysteem worden uitgevoerd met kinematische restricties. (Dit proef-
schrift)

4. In analogie tot een feedforward regelactie voor verstoringen in de Carte-
sische of joint-ruimte, kan een feedforward regelactie ook worden toege-
past voor verstoringen die optreden in camerabeelden (beeldruimte). (Dit
proefschrift)

5. Kunstmatige intelligentie is geen partij voor natuurlijke domheid.

6. Kennis en kunde op een bepaald gebied wordt veelal verkregen door het
maken van fouten. Ervaring is het herkennen van dezelfde fouten als deze
opnieuw worden gemaakt.

7. Wat onmisbaar is, is onzichtbaar voor het oog.
- aangepast van Antoine de Saint-Exupéry, Le petit Prince.

8. Bij een samenwerking tussen de academische wereld en de industrie die-
nen de wetenschappelijke voordelen niet ten koste te gaan van de finan-
ciële voordelen.

9. De paradigmaverschuiving van feitenkennis-cultuur naar opzoek-cultuur
zal onze relatie tot kennis drastisch veranderen.

10. De opkomst van de zogenaamde smart-phone met het gebruik van sociale
media om te allen tijde beschikbaar te zijn, heeft een averechts effect.

Roel Pieters
Maart, 2013



Propositions

accompanying the thesis

Direct Methods for Vision-Based Robot Control

Application and Implementation

1. The measurement and feedback of visual information in a control sys-
tem provides advantages when the transformation between the product
and the measurement location is unknown or uncertain. A direct, relative
measurement between product and tool circumvents this transformation.
(This thesis)

2. If sampled at a sufficiently high rate, feedback of a control system can
consist of only a camera-based signal. (This thesis)

3. The instantaneous and ’real-time’ generation of a trajectory for robotic
control systems, enables the instantaneous and ’real-time’ adaptation of
this trajectory. As a result, the motion of a visual control system can be
executed with kinematic constraints. (This thesis)

4. Similar to a feedforward control action to account for disturbances in
Cartesian or joint-space, a feedforward control action can also be applied
to account for disturbances that occur in camera images (image-space).
(This thesis)

5. Artificial intelligence is no match for natural stupidity.

6. Knowledge and expertise in a particular field is often obtained by making
mistakes. Experience is recognizing the same mistakes as they are made
again.

7. What is essential is invisible to the eye.
-Antoine de Saint-Exupéry, The Little Prince

8. In a collaboration between academia and industry, the scientific benefits
should not be at the expense of the financial benefits.

9. The paradigm shift from ’factual knowledge’-culture to ’lookup’-culture,
will change our relationship to knowledge drastically.

10. The rise of the so-called smart-phone with the use of social media to be
available at all times, has the opposite effect.

Roel Pieters
March, 2013
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